Adhesives for Wood and Lignocellulosic Materials.
Material type:
- text
- computer
- online resource
- 9781119605669
- 668.3
- TS857 .K863 2019
Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Part A: Substrates, Adhesives, and Adhesion -- 1 Wood as a Unique Adherend -- 1.1 Introduction -- 1.2 Wood, An Adherend with Hierarchical Structure -- 1.3 Details of Structural Hierarchy in Wood -- 1.3.1 Physical Structure -- 1.3.1.1 Growth Rings and Ring-Porous and Diffuse-Porous Wood -- 1.3.1.2 Wood Cells -- 1.3.1.3 Organization of Cell Walls in Wood -- 1.4 Chemical Composition -- 1.4.1 Cellulose -- 1.4.2 Hemicelluloses -- 1.4.3 Lignin -- 1.4.3.1 Lignin Isolation -- 1.4.3.2 Functional Groups in Lignin -- 1.4.3.3 Evidences for the Phenylpropane Units as Building Blocks of Lignin -- 1.4.3.4 Dehydrogenation Polymer (DHP) -- 1.5 Influence of Hierarchical Structure of Wood on Wood-Adhesive Interaction -- 1.5.1 Penetration -- 1.5.1.1 Penetration in Different Size Scales -- 1.5.2 Other Wood-Related and Process-Related Factors -- 1.6 Effect of Hierarchical Structure of Wood on Adhesive Penetration -- 1.7 Wood Factors Affecting Penetration -- 1.8 Influence of Resin Type and Formulation on Penetration -- 1.9 Effect of Processing Parameters on Penetration -- References -- 2 Fundamentals of Adhesion -- 2.1 Introduction -- 2.2 Definitions -- 2.2.1 Adhesion -- 2.2.2 Cohesion -- 2.2.3 Adhesive -- 2.2.4 Adherend -- 2.2.5 Bonding -- 2.2.6 Adhesive, Assembly -- 2.3 Mechanism of Adhesion -- 2.3.1 Specific Adhesion -- 2.3.1.1 London Dispersion Force -- 2.3.1.2 Dipole-Dipole Interaction -- 2.3.1.3 Dipole-Induced-Dipole Interaction -- 2.3.1.4 Ion-Dipole Interaction -- 2.3.1.5 Hydrogen Bonds -- 2.3.1.6 Ionic Bonds -- 2.3.1.7 Chemical Bonds -- 2.4 Theories of Adhesion -- 2.4.1 Mechanical Theory -- 2.4.1.1 lllustration of Mechanical Adhesion for Wood -- 2.5 Electronic Theory -- 2.6 Diffusion Theory -- 2.7 Adsorption/Covalent Bond Theory.
2.8 Adhesion Interactions as a Function of Length Scale -- 2.9 Wetting of the Substrate by the Adhesive -- 2.10 Equilibrium Contact Angle -- 2.11 Thermodynamic Work of Adhesion -- 2.12 Spreading Coefficient -- 2.13 Zisman's Rectilinear Relationship-Zisman's Plots and Critical Surface Tension of a Solid -- 2.14 Effect of Surface Roughness on Contact Angle -- 2.15 Weak Boundary Layer Theory -- 2.16 Measurement of the Wetting Parameters for Wood Substrate -- 2.16.1 Some Results on Surface Energy of Wood -- 2.17 Covalent Bond Formation -- References -- 3 Urea-Formaldehyde Resins -- 3.1 Introduction -- 3.2 Historical Review of UF Resins (Plastic Historical Society) -- 3.3 Reaction between Urea and Formaldehyde -- 3.4 Reaction Sequence -- 3.5 Manufacture of UF Resin -- 3.6 Chemistry of Reaction-Conventional Process (Alkaline-Acid Process/Three-Step Process) -- 3.6.1 First Stage-Reaction under Alkaline Conditions -- 3.6.1.1 Reaction Mechanism -- 3.6.2 Second-Stage Condensation Reaction under Acid Conditions: Chain Extension -- 3.6.2.1 Reaction Chemistry -- 3.6.2.2 Reaction Mechanism -- 3.6.3 Third Stage-Neutralization and Addition of Second Urea -- 3.6.3.1 Reactions Involving Migration of Hydroxymethyl Groups -- 3.7 Composition of the Commercial UF Resins -- 3.7.1 Monomeric Species -- 3.7.2 Oligomeric Species -- 3.7.3 General Structure of Commercial UF Resins -- 3.7.4 Urons -- 3.8 Reactions of UF during Storage -- 3.9 Reaction Parameters in the Production of Amino Resins (General) -- 3.10 Four-Step Process for Low Formaldehyde Emission -- 3.11 Curing of UF Resins -- 3.11.1 Ammonium Salts -- 3.12 Cross-Linked Structure -- 3.13 Triazinone for Curing the UF Resin -- 3.14 Distinguishing Feature of UF from other Synthetic Resin Adhesives such as MUF and PF -- 3.15 Other Curing Agents -- 3.16 Protic Ionic Liquids as a New Hardener-Modifier System.
3.17 Improvement of Water Resistance and Adhesive Performance of UF Resin -- 3.18 Characterization of UF Resin -- 3.18.1 13C NMR Data -- 3.18.2 Free Formaldehyde Content in the Resin -- 3.18.3 Molecular Weight and Molecular Weight Distribution -- 3.18.4 Size Exclusion Chromatography -- 3.18.5 MALDI-TOF MS Method -- 3.18.6 Cure Time -- 3.18.7 Differential Scanning Calorimetry -- 3.19 UF Resin Cure Kinetics -- 3.20 UF Resins with Low Formaldehyde Emission -- 3.21 Modification by Polyamines -- 3.22 Cyclic Urea Prepolymer -- 3.22.1 Preparation of Cyclic Urea Prepolymer -- 3.22.2 Cyclic Urea Prepolymer as a Modifying Resin for other Adhesives -- 3.23 Improvement of UF and MUF Resins by Addition of Hyperbranched Dendrimers -- 3.23.1 Urea and Melamine Resins without Formaldehyde -- References -- 4 Melamine-Formaldehyde Resin -- 4.1 Introduction -- 4.2 Chemistry -- 4.2.1 Formation of Methylolmelamine -- 4.2.2 Condensation of Methylolmelamines -- 4.2.3 Cross-Linking -- 4.3 Melamine-Urea-Formaldehyde (MUF) Resin -- 4.3.1 Liquid MUF Resin Preparation -- 4.3.2 Phenol-MUF (PMUF) Resins -- 4.3.3 Melamine-Formaldehyde Resin Modification by Acetoguanamine for Post-Formable High-Pressure Laminate -- 4.3.4 MUF Adhesive Resins of Upgraded Performance -- 4.3.5 Cold-Setting MUF Adhesives -- References -- 5 Phenol-Formaldehyde Resins -- 5.1 Introduction -- 5.2 Historical -- 5.3 Definitions and Types of Phenolic Resins -- 5.4 Basic Chemistry -- 5.4.1 Resols -- 5.4.2 Novolacs -- 5.4.3 Difference between the Acid and Base Catalysis -- 5.4.4 Reaction between Phenol and Formaldehyde (Sodium Hydroxide Catalyzed) -- 5.4.4.1 Electron Delocalization in Phenol and Phenoxide Anion -- 5.4.4.2 Hydroxymethylation of Phenol and Further Condensation (under Alkaline Conditions) -- 5.4.5 Formation of Chelate Ring.
5.4.6 Reaction between Phenol and Formaldehyde (Ammonia and Amine Catalysis) -- 5.4.7 Manufacture of Phenolic Resins -- 5.4.7.1 Principles of Manufacture -- 5.5 Effect of Process Variables -- 5.5.1 Catalyst Types and pH of Resin -- 5.5.2 Effect of Viscosity -- 5.5.3 MW and Its Distribution of PF Resin -- 5.6 Commercial Phenolic Resin for Wood Products -- 5.6.1 Spray Drying of Phenolic Resin -- 5.6.1.1 The Spray Drying Process -- 5.6.2 Phenolic Dry Resin Film -- 5.6.2.1 Types and Grades of Dry Glue Film -- 5.6.2.2 Process of Making the Dry Adhesive Film -- 5.7 Curing of Phenolic Resin -- 5.7.1 PF Cure Acceleration -- 5.7.2 PF Cure Acceleration by Additives -- 5.7.3 Mechanism -- References -- 6 Resorcinol-Formaldehyde Resins and Hydroxymethyl Resorcinol (HMR and n-HMR) -- 6.1 Introduction -- 6.2 Reaction between Resorcinol and Formaldehyde -- 6.3 Comparison between Resorcinol and Phenol -- 6.4 Reactive Positions and Types of Linkages Comparison between Resorcinol and Phenol -- 6.5 Hydroxymethyl Resorcinol -- 6.5.1 Introduction -- 6.5.2 Normal HMR -- 6.5.3 Formulation of HMR -- 6.5.3.1 Mixing Procedure -- 6.5.3.2 Limitations to the Use of HMR -- 6.6 Novolak-Based HMR -- 6.6.1 Preparation of n-HMR -- 6.7 Bonding Mechanism using HMR -- 6.7.1 Mechanism Based on the Material Properties of HMR -- 6.7.2 Mechanism Based on Surface Chemistry -- 6.8 Applications of HMR and n-HMR -- 6.8.1 Bonding to Preservative-Treated Wood -- 6.8.2 Epoxy-Wood Adhesion -- 6.8.3 Bonding of Fiber-Reinforced Polymer-Glulam Panels -- 6.8.4 Priming Agent for Bondability of Wax-Treated Wood -- 6.9 Special Adhesives of Reduced Resorcinol Content -- 6.9.1 Fast-Setting Adhesive for Fingerjointing and Glulam -- 6.9.2 Branched PRF Adhesives -- 6.9.3 Cold-Setting PF Adhesives Containing No Resorcinol -- References -- 7 Polyurethane Adhesives -- 7.1 Introduction -- 7.2 Historical.
7.3 Reactions of Isocyanates -- 7.4 Raw Materials -- 7.4.1 Isocyanates -- 7.4.1.1 Aliphatic Isocyanates -- 7.4.1.2 Aromatic Diisocyanates -- 7.5 Catalysts -- 7.6 Blocked Isocyanates -- 7.7 Advantages of pMDI -- 7.8 PU Adhesive-Wood Interaction -- 7.9 PU-UF Hybrid Adhesives -- 7.10 PU-PF Hybrid Adhesives -- 7.11 EMDI-Based Adhesives -- 7.11.1 Comparison between EMDI and pMDI -- 7.12 Emulsion Polymer Isocyanate (EPI) Adhesive -- 7.13 Non-Isocyanate Polyurethanes and Biobased PU Adhesives -- References -- 8 Wood Surface Inactivation (Thermal) -- 8.1 Introduction -- 8.2 Causes and Sources of Inactivation -- 8.3 Mechanisms of Inactivation -- 8.4 Factors Affecting Wood Surface Inactivation -- 8.4.1 Effect of Wood Species -- 8.4.2 Inactivation Due to High-Temperature Drying -- 8.4.2.1 Effect of Drying Technique -- 8.5 Physical Mechanisms of Inactivation -- 8.5.1 Effect of Extractives on Wettability and Adhesion -- 8.5.2 Molecular Reorientation at Surfaces -- 8.5.3 Micropore Closure -- 8.6 Chemical Mechanisms of Inactivation -- 8.6.1 Elimination of Surface Hydroxyl Bonding Sites -- 8.6.2 Oxidation and/or Pyrolysis of Surface Bonding Sites -- 8.6.3 Chemical Interference with Resin Cure or Bonding -- References -- 9 Wood Surface Inactivation Due to Extractives -- 9.1 Introduction -- 9.2 Migration of Extractives to the Wood Surface -- 9.3 Influence of Extractives on Bonding Properties of Wood -- 9.4 Effect of pH of Wood on the Adhesion -- 9.5 Effect of Extractive Migrations during Kiln Seasoning on Adhesion -- 9.6 Methods to Reduce the Influence of Extractives on Wood Adhesion -- 9.6.1 Mechanical Method -- 9.6.2 Chemical Method -- References -- 10 Surface Modification of Wood -- 10.1 Introduction -- 10.2 Surface Modification Methods -- 10.2.1 Plasma and Corona Treatments -- 10.2.2 Corona Treatment -- 10.2.3 Plasma Applications for Wood Surface Plasma Treatments.
10.3 Enzymatic Modification for Hydrophobicity.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.