ORPP logo
Image from Google Jackets

Interface / Interphase in Polymer Nanocomposites.

By: Contributor(s): Material type: TextTextSeries: Adhesion and Adhesives: Fundamental and Applied Aspects SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2017Edition: 1st edDescription: 1 online resource (443 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119185130
Subject(s): Genre/Form: Additional physical formats: Print version:: Interface / Interphase in Polymer NanocompositesLOC classification:
  • TA418.9.N35.I584 2017
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Nanocomposite Interfaces/Interphases -- 1 Polymer Nanocomposite Interfaces: The Hidden Lever for Optimizing Performance in Spherical Nanofilled Polymers -- 1.1 Introduction -- 1.1.1 Dispersion Control -- 1.1.2 Interface Structure -- 1.1.3 Interface Properties -- 1.1.4 Measuring and Modeling the Interface -- 1.2 Dispersion Control through Interfacial Modification -- 1.2.1 Introduction -- 1.2.2 Short Ligands -- 1.2.3 Polymer Brush -- 1.2.3.1 Polymer Brush Synthesis Methods -- 1.2.3.2 Enthalpic and Entropic Contributions of Polymer Brushes to Dispersion Control -- 1.3 Interface Structure -- 1.3.1 Introduction -- 1.3.2 Effects of Particle Size -- 1.3.3 Effects of Crystallinity and Cross-linking -- 1.3.4 Effects of Polymer Brush Penetration -- 1.3.4.1 The Athermal Case -- 1.3.4.2 The Enthalpic Case -- 1.3.5 Characterizing the Interface Structure -- 1.4 Interface Properties and Characterization Techniques -- 1.4.1 Introduction -- 1.4.2 Molecular Mobility in Nanocomposite Interfaces -- 1.4.3 Thermomechanical Properties and Measurements -- 1.4.3.1 Direct Measurement -- 1.4.3.2 Indirect Methods -- 1.4.4 Dielectric Properties and Measurements -- 1.4.4.1 Effects of Nanofillers -- 1.4.4.2 Measurement Techniques -- 1.4.4.3 Indirect Measurement -- 1.4.4.4 Finite Element Modeling -- 1.4.5 Remarks on Characterization Methods -- 1.5 Summary -- Acknowledgements -- References -- 2 Interphase Engineering with Nanofillers in Fiber-Reinforced Polymer Composites -- 2.1 Introduction -- 2.2 Interphase Tailoring for Stress Transfer -- 2.2.1 Coating with Nanofillers -- 2.2.2 Creation of Hierarchical Fibers -- 2.2.2.1 Chemical Grafting of Nanofillers -- 2.2.2.2 Chemical Vapor Deposition (CVD) -- 2.2.2.3 Other "Grafting" Techniques -- 2.2.3 Effects of Matrix Modification with Nanofillers.
2.3 Interphase Tailoring for Functionality -- 2.3.1 Sensing/Damage Detection -- 2.3.2 Self-healing/Repair -- 2.3.3 Damping -- 2.4 Outlook and Future Trends -- 2.5 Summary -- Acknowledgements -- Nomenclature -- References -- 3 Formation and Functionality of Interphase in Polymer Nanocomposites -- 3.1 Introduction -- 3.2 Formation of Interphase in Polymer Nanocomposites -- 3.3 Functionality of Interphase in Polymer Nanocomposites -- 3.3.1 Load Transfer in Nanocomposites -- 3.3.2 Reduction in Growth Rate of Fatigue Cracks in Nanocomposites -- 3.3.3 Controlling the Fracture Behavior of Nanocomposites -- 3.3.4 Enhancing the Damping Properties of Nanocomposites -- 3.3.5 Channels for the Transport of Ions and Moisture in Nanocomposites -- 3.3.6 Phonon Scattering in Nanocomposites -- 3.3.7 Electron Transfer in Nanocomposites -- 3.4 Summary and Prospects -- Acknowledgements -- References -- 4 Impact of Crystallization on the Interface in Polymer Nanocomposites -- 4.1 Introduction -- 4.2 Thermodynamics of Crystallization -- 4.3 Nylon Nanocomposites -- 4.3.1 Dispersion of MLS in Nylon Nanocomposites -- 4.3.2 Effect of MLS on Thermal Transitions in Nylon -- 4.3.3 Permeability -- 4.4 PET Nanocomposites -- 4.4.1 Dispersion of MLS in PET Nanocomposites -- 4.4.2 Effect of MLS on Thermal Transitions in PET -- 4.5 PEN Nanocomposites -- 4.5.1 Dispersion of MLS in PEN Nanocomposites -- 4.5.2 Effect of MLS on Thermal Transitions in PEN -- 4.5.3 Permeability -- 4.5.4 The Role of the Interface in Permeability: PET versus PEN -- 4.6 Summary -- Acknowledgements -- References -- 5 Improved Nanofiller-Matrix Bonding and Distribution in GnP-reinforced Polymer Nanocomposites by Surface Plasma Treatments of GnP -- 5.1 Introduction -- 5.2 Experimental -- 5.2.1 Composite Fabrication -- 5.2.2 Image Analysis -- 5.2.3 Raman Spectroscopy -- 5.2.4 X-ray Photoelectron Spectroscopy (XPS).
5.2.5 Scanning Electron Microscopy (SEM) -- 5.2.6 Mechanical Testing -- 5.3 Results -- 5.4 Conclusions -- Acknowledgement -- References -- 6 Interfacial Effects in Polymer Nanocomposites Studied by Thermal and Dielectric Techniques -- 6.1 Introduction -- 6.2 Experimental Techniques -- 6.2.1 Differential Scanning Calorimetry (DSC) -- 6.2.2 Dielectric Techniques -- 6.2.2.1 Broadband Dielectric Spectroscopy (BDS) -- 6.2.2.2 Thermally Stimulated Depolarization Current (TSDC) Techniques -- 6.3 Evaluation in Terms of Interfacial Characteristics -- 6.3.1 Analysis of DSC Measurements -- 6.3.2 Analysis of Dielectric Measurements -- 6.3.3 Thickness of the Interfacial Layer -- 6.4 Examples -- 6.4.1 DSC Measurements -- 6.4.2 Dielectric Measurements -- 6.5 Prospects -- 6.6 Summary -- Abbreviations -- Symbols -- Greek Symbols -- Acknowledgements -- References -- Part 2 Techniques to Characterize/Control Nanoadhesion -- 7 Investigation of Interfacial Interactions between Nanofillers and Polymer Matrices Using a Variety of Techniques -- 7.1 Introduction -- 7.2 Observation of Interfacial Layer in Nanostructured Carbon Materials-based Nanocomposites -- 7.2.1 Characterization of Interfacial Layer Around CNTs -- 7.2.2 Characterization of Interfacial Layer Around Graphene Sheets -- 7.3 Interfacial Properties between Nanofiller and Polymer Matrix -- 7.3.1 Theoretical Simulations of CNT and/or Graphene-based Nanocomposites -- 7.3.1.1 Theoretical Simulation of CNT-based Nanocomposites -- 7.3.1.2 Theoretical Simulation of Graphene-based Nanocomposites -- 7.3.2 Experimental Studies to Characterize Interfacial Behavior in CNT and/or Graphene-based Nanocomposites -- 7.3.2.1 Indirect Measurement -- 7.3.2.2 Direct Measurement -- 7.4 Summary -- Acknowledgements -- References -- 8 Chemical and Physical Techniques for Surface Modification of Nanocellulose Reinforcements.
8.1 Introduction -- 8.2 Chemical Surface Modification -- 8.2.1 Acetylation -- 8.2.2 Silylation -- 8.2.3 Bacterial Treatment -- 8.2.4 Grafting -- 8.2.5 Surfactant Adsorption -- 8.2.6 TEMPO-mediated Oxidation -- 8.2.7 Click Chemistry -- 8.3 Physical Surface Modification -- 8.3.1 Plasma -- 8.3.2 Corona -- 8.3.3 Laser -- 8.3.4 Flame -- 8.3.5 Use of Ions -- 8.4 Summary -- Acknowledgments -- References -- 9 Nondestructive Sensing of Interface/Interphase Damage in Fiber/Matrix Nanocomposites -- 9.1 Introduction -- 9.2 Experimental Specimens and Methods -- 9.2.1 Gradient Specimen Test -- 9.2.2 Dual Matrix Fragmentation Test -- 9.3 Damage Sensing Using Electrical Resistance Measurements -- 9.3.1 Electrical Resistance Measurement for Strain Sensing Application -- 9.3.2 Electrical Resistance Measurement for Interface/ Interphase Evaluation -- 9.4 Summary -- References -- 10 Development of Polymeric Biocomposites: Particulate Incorporation, Interphase Generation and Evaluation by Nanoindentation -- 10.1 Introduction -- 10.2 The Definitions of Composite and its Constituents -- 10.2.1 Composite -- 10.2.2 Biocomposite -- 10.2.3 The Reinforcement -- 10.2.4 The Matrix -- 10.3 Physical and Chemical Structures of Bio-based Reinforcements -- 10.3.1 Plant/Vegetable-based Reinforcements/Fibres -- 10.3.1.1 Physical Structure -- 10.3.1.2 Chemical Structure -- 10.3.2 Animal-based Reinforcements/Fibres -- 10.3.2.1 Physical Structure -- 10.3.2.2 Chemical Structure -- 10.4 Particulate and Short Fibre Composites -- 10.4.1 Biochar as Potential New Bio-based Particulate Reinforcement -- 10.4.2 Properties of Particulate-based Composites: Governing Factors -- 10.4.2.1 Particulate Properties -- 10.4.2.2 Particulate Structure -- 10.5 Nanoindentation Technique to Determine Interphase and Composite Properties -- 10.5.1 The Technique and Theory of Nanoindentation.
10.5.1.1 Different Types of Indenter Tips -- 10.5.1.2 Nanoindentation Theory -- 10.5.1.3 Nanoindentation Instrument -- 10.5.2 Nanoindentation on Polymeric Composites and their Interphase -- 10.6 Concluding Remarks -- References -- 11 Perspectives on the Use of Molecular Dynamics Simulations to Characterize Filler-Matrix Adhesion and Nanocomposite Mechanical Properties -- 11.1 Introduction -- 11.2 Overview of Molecular Dynamics (MD) Simulations -- 11.3 Characterization of Interfacial Adhesion with MD Simulations -- 11.3.1 Quantifying Adhesion Strength -- 11.3.2 Effect of the Strength of Matrix-filler Interactions -- 11.3.3 Effect of Filler Geometry -- 11.3.4 Effect of Ordering and Cross-linking within the Polymer Matrix -- 11.4 Characterization of Mechanical Properties with MD Simulations -- 11.4.1 Predicting Static Mechanical Properties -- 11.4.2 Predicting Dynamic Mechanical Properties -- 11.5 Prospects -- 11.6 Summary -- Acknowledgements -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Nanocomposite Interfaces/Interphases -- 1 Polymer Nanocomposite Interfaces: The Hidden Lever for Optimizing Performance in Spherical Nanofilled Polymers -- 1.1 Introduction -- 1.1.1 Dispersion Control -- 1.1.2 Interface Structure -- 1.1.3 Interface Properties -- 1.1.4 Measuring and Modeling the Interface -- 1.2 Dispersion Control through Interfacial Modification -- 1.2.1 Introduction -- 1.2.2 Short Ligands -- 1.2.3 Polymer Brush -- 1.2.3.1 Polymer Brush Synthesis Methods -- 1.2.3.2 Enthalpic and Entropic Contributions of Polymer Brushes to Dispersion Control -- 1.3 Interface Structure -- 1.3.1 Introduction -- 1.3.2 Effects of Particle Size -- 1.3.3 Effects of Crystallinity and Cross-linking -- 1.3.4 Effects of Polymer Brush Penetration -- 1.3.4.1 The Athermal Case -- 1.3.4.2 The Enthalpic Case -- 1.3.5 Characterizing the Interface Structure -- 1.4 Interface Properties and Characterization Techniques -- 1.4.1 Introduction -- 1.4.2 Molecular Mobility in Nanocomposite Interfaces -- 1.4.3 Thermomechanical Properties and Measurements -- 1.4.3.1 Direct Measurement -- 1.4.3.2 Indirect Methods -- 1.4.4 Dielectric Properties and Measurements -- 1.4.4.1 Effects of Nanofillers -- 1.4.4.2 Measurement Techniques -- 1.4.4.3 Indirect Measurement -- 1.4.4.4 Finite Element Modeling -- 1.4.5 Remarks on Characterization Methods -- 1.5 Summary -- Acknowledgements -- References -- 2 Interphase Engineering with Nanofillers in Fiber-Reinforced Polymer Composites -- 2.1 Introduction -- 2.2 Interphase Tailoring for Stress Transfer -- 2.2.1 Coating with Nanofillers -- 2.2.2 Creation of Hierarchical Fibers -- 2.2.2.1 Chemical Grafting of Nanofillers -- 2.2.2.2 Chemical Vapor Deposition (CVD) -- 2.2.2.3 Other "Grafting" Techniques -- 2.2.3 Effects of Matrix Modification with Nanofillers.

2.3 Interphase Tailoring for Functionality -- 2.3.1 Sensing/Damage Detection -- 2.3.2 Self-healing/Repair -- 2.3.3 Damping -- 2.4 Outlook and Future Trends -- 2.5 Summary -- Acknowledgements -- Nomenclature -- References -- 3 Formation and Functionality of Interphase in Polymer Nanocomposites -- 3.1 Introduction -- 3.2 Formation of Interphase in Polymer Nanocomposites -- 3.3 Functionality of Interphase in Polymer Nanocomposites -- 3.3.1 Load Transfer in Nanocomposites -- 3.3.2 Reduction in Growth Rate of Fatigue Cracks in Nanocomposites -- 3.3.3 Controlling the Fracture Behavior of Nanocomposites -- 3.3.4 Enhancing the Damping Properties of Nanocomposites -- 3.3.5 Channels for the Transport of Ions and Moisture in Nanocomposites -- 3.3.6 Phonon Scattering in Nanocomposites -- 3.3.7 Electron Transfer in Nanocomposites -- 3.4 Summary and Prospects -- Acknowledgements -- References -- 4 Impact of Crystallization on the Interface in Polymer Nanocomposites -- 4.1 Introduction -- 4.2 Thermodynamics of Crystallization -- 4.3 Nylon Nanocomposites -- 4.3.1 Dispersion of MLS in Nylon Nanocomposites -- 4.3.2 Effect of MLS on Thermal Transitions in Nylon -- 4.3.3 Permeability -- 4.4 PET Nanocomposites -- 4.4.1 Dispersion of MLS in PET Nanocomposites -- 4.4.2 Effect of MLS on Thermal Transitions in PET -- 4.5 PEN Nanocomposites -- 4.5.1 Dispersion of MLS in PEN Nanocomposites -- 4.5.2 Effect of MLS on Thermal Transitions in PEN -- 4.5.3 Permeability -- 4.5.4 The Role of the Interface in Permeability: PET versus PEN -- 4.6 Summary -- Acknowledgements -- References -- 5 Improved Nanofiller-Matrix Bonding and Distribution in GnP-reinforced Polymer Nanocomposites by Surface Plasma Treatments of GnP -- 5.1 Introduction -- 5.2 Experimental -- 5.2.1 Composite Fabrication -- 5.2.2 Image Analysis -- 5.2.3 Raman Spectroscopy -- 5.2.4 X-ray Photoelectron Spectroscopy (XPS).

5.2.5 Scanning Electron Microscopy (SEM) -- 5.2.6 Mechanical Testing -- 5.3 Results -- 5.4 Conclusions -- Acknowledgement -- References -- 6 Interfacial Effects in Polymer Nanocomposites Studied by Thermal and Dielectric Techniques -- 6.1 Introduction -- 6.2 Experimental Techniques -- 6.2.1 Differential Scanning Calorimetry (DSC) -- 6.2.2 Dielectric Techniques -- 6.2.2.1 Broadband Dielectric Spectroscopy (BDS) -- 6.2.2.2 Thermally Stimulated Depolarization Current (TSDC) Techniques -- 6.3 Evaluation in Terms of Interfacial Characteristics -- 6.3.1 Analysis of DSC Measurements -- 6.3.2 Analysis of Dielectric Measurements -- 6.3.3 Thickness of the Interfacial Layer -- 6.4 Examples -- 6.4.1 DSC Measurements -- 6.4.2 Dielectric Measurements -- 6.5 Prospects -- 6.6 Summary -- Abbreviations -- Symbols -- Greek Symbols -- Acknowledgements -- References -- Part 2 Techniques to Characterize/Control Nanoadhesion -- 7 Investigation of Interfacial Interactions between Nanofillers and Polymer Matrices Using a Variety of Techniques -- 7.1 Introduction -- 7.2 Observation of Interfacial Layer in Nanostructured Carbon Materials-based Nanocomposites -- 7.2.1 Characterization of Interfacial Layer Around CNTs -- 7.2.2 Characterization of Interfacial Layer Around Graphene Sheets -- 7.3 Interfacial Properties between Nanofiller and Polymer Matrix -- 7.3.1 Theoretical Simulations of CNT and/or Graphene-based Nanocomposites -- 7.3.1.1 Theoretical Simulation of CNT-based Nanocomposites -- 7.3.1.2 Theoretical Simulation of Graphene-based Nanocomposites -- 7.3.2 Experimental Studies to Characterize Interfacial Behavior in CNT and/or Graphene-based Nanocomposites -- 7.3.2.1 Indirect Measurement -- 7.3.2.2 Direct Measurement -- 7.4 Summary -- Acknowledgements -- References -- 8 Chemical and Physical Techniques for Surface Modification of Nanocellulose Reinforcements.

8.1 Introduction -- 8.2 Chemical Surface Modification -- 8.2.1 Acetylation -- 8.2.2 Silylation -- 8.2.3 Bacterial Treatment -- 8.2.4 Grafting -- 8.2.5 Surfactant Adsorption -- 8.2.6 TEMPO-mediated Oxidation -- 8.2.7 Click Chemistry -- 8.3 Physical Surface Modification -- 8.3.1 Plasma -- 8.3.2 Corona -- 8.3.3 Laser -- 8.3.4 Flame -- 8.3.5 Use of Ions -- 8.4 Summary -- Acknowledgments -- References -- 9 Nondestructive Sensing of Interface/Interphase Damage in Fiber/Matrix Nanocomposites -- 9.1 Introduction -- 9.2 Experimental Specimens and Methods -- 9.2.1 Gradient Specimen Test -- 9.2.2 Dual Matrix Fragmentation Test -- 9.3 Damage Sensing Using Electrical Resistance Measurements -- 9.3.1 Electrical Resistance Measurement for Strain Sensing Application -- 9.3.2 Electrical Resistance Measurement for Interface/ Interphase Evaluation -- 9.4 Summary -- References -- 10 Development of Polymeric Biocomposites: Particulate Incorporation, Interphase Generation and Evaluation by Nanoindentation -- 10.1 Introduction -- 10.2 The Definitions of Composite and its Constituents -- 10.2.1 Composite -- 10.2.2 Biocomposite -- 10.2.3 The Reinforcement -- 10.2.4 The Matrix -- 10.3 Physical and Chemical Structures of Bio-based Reinforcements -- 10.3.1 Plant/Vegetable-based Reinforcements/Fibres -- 10.3.1.1 Physical Structure -- 10.3.1.2 Chemical Structure -- 10.3.2 Animal-based Reinforcements/Fibres -- 10.3.2.1 Physical Structure -- 10.3.2.2 Chemical Structure -- 10.4 Particulate and Short Fibre Composites -- 10.4.1 Biochar as Potential New Bio-based Particulate Reinforcement -- 10.4.2 Properties of Particulate-based Composites: Governing Factors -- 10.4.2.1 Particulate Properties -- 10.4.2.2 Particulate Structure -- 10.5 Nanoindentation Technique to Determine Interphase and Composite Properties -- 10.5.1 The Technique and Theory of Nanoindentation.

10.5.1.1 Different Types of Indenter Tips -- 10.5.1.2 Nanoindentation Theory -- 10.5.1.3 Nanoindentation Instrument -- 10.5.2 Nanoindentation on Polymeric Composites and their Interphase -- 10.6 Concluding Remarks -- References -- 11 Perspectives on the Use of Molecular Dynamics Simulations to Characterize Filler-Matrix Adhesion and Nanocomposite Mechanical Properties -- 11.1 Introduction -- 11.2 Overview of Molecular Dynamics (MD) Simulations -- 11.3 Characterization of Interfacial Adhesion with MD Simulations -- 11.3.1 Quantifying Adhesion Strength -- 11.3.2 Effect of the Strength of Matrix-filler Interactions -- 11.3.3 Effect of Filler Geometry -- 11.3.4 Effect of Ordering and Cross-linking within the Polymer Matrix -- 11.4 Characterization of Mechanical Properties with MD Simulations -- 11.4.1 Predicting Static Mechanical Properties -- 11.4.2 Predicting Dynamic Mechanical Properties -- 11.5 Prospects -- 11.6 Summary -- Acknowledgements -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.