Advanced Electrode Materials.
Material type:
- text
- computer
- online resource
- 9781119242840
- 621.312424
- TK2901.E44A383 2016
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 State-of-the-Art Electrode Materials -- 1 Advances in Electrode Materials -- 1.1 Advanced Electrode Materials for Molecular Electrochemistry -- 1.1.1 Graphite and Related sp2-Hybridized Carbon Materials -- 1.1.2 Graphene -- 1.1.2.1 Graphene Preparation -- 1.1.2.2 Engineering of Graphene -- 1.1.3 Carbon Nanotubes -- 1.1.3.1 Carbon Nanotube Networks for Applications in Flexible Electronics -- 1.1.4 Surface Structure of Carbon Electrode Materials -- 1.2 Electrode Materials for Electrochemical Capacitors -- 1.2.1 Carbon-based Electrodes -- 1.2.2 Metal Oxide Composite Electrodes -- 1.2.3 Conductive Polymers-based Electrodes -- 1.2.4 Nanocomposites-based Electrode Materials for Supercapacitor -- 1.3 Nanostructure Electrode Materials for Electrochemical Energy Storage and Conversion -- 1.3.1 Assembly and Properties of Nanoparticles -- 1.4 Progress and Perspective of Advanced Electrode Materials -- Acknowledgments -- References -- 2 Diamond-based Electrodes -- 2.1 Introduction -- 2.2 Techniques for Preparation of Diamond Layers -- 2.2.1 HF-CVD Diamond Synthesis -- 2.2.2 MW-CVD Diamond Synthesis -- 2.2.3 RF-CVD Diamond Synthesis -- 2.3 Why Diamond for Electrodes? -- 2.4 Diamond Doping -- 2.4.1 In Situ Diamond Doping -- 2.4.2 Ion Implantation -- 2.5 Electrochemical Properties of Doped Diamonds -- 2.6 Diamond Electrodes Applications -- 2.6.1 Water Treatment and Disinfection -- 2.6.2 Electroanalytical Sensors -- 2.6.3 Energy Technology -- 2.6.3.1 Supercapacitors -- 2.6.3.2 Li Ion Batteries -- 2.6.3.3 Fuel Cells -- 2.7 Conclusions -- References -- 3 Recent Advances in Tungsten Oxide/Conducting Polymer Hybrid Assemblies for Electrochromic Applications -- 3.1 Introduction -- 3.2 History and Technology of Electrochromics -- 3.3 Electrochromic Devices -- 3.3.1 Electrochromic Contrast.
3.3.2 Coloration Efficiency -- 3.3.3 Switching Speed -- 3.3.4 Stability -- 3.3.5 Optical Memory -- 3.4 Transition Metal Oxides -- 3.5 Tungsten Oxide -- 3.6 Conjugated Organic Polymers -- 3.7 Hybrid Materials -- 3.8 Electrochromic Tungsten Oxide/Conducting Polymer Hybrids -- 3.9 Conclusions and Perspectives -- Acknowledgments -- References -- 4 Advanced Surfactant-free Nanomaterials for Electrochemical Energy Conversion Systems: From Electrocatalysis to Bionanotechnology -- 4.1 Advanced Electrode Materials Design: Preparation and Characterization of Metal Nanoparticles -- 4.1.1 Current Strategies for Metal Nanoparticles Preparation: General Consideration -- 4.1.2 Emerged Synthetic Methods without Organic Molecules as Surfactants -- 4.2 Electrocatalytic Performances Toward Organic Molecules Oxidation -- 4.2.1 Electrocatalytic Properties of Metal Nanoparticles in Alkaline Medium -- 4.2.1.1 Electrocatalytic Properties Toward Glycerol Oxidation -- 4.2.1.2 Electrocatalytic Properties Toward Carbohydrates Oxidation -- 4.2.2 Spectroelectrochemical Characterization of the Electrode-Electrolyte Interface -- 4.2.2.1 Spectroelectrochemical Probing of Electrode Materials Surface by CO Stripping -- 4.2.2.2 Spectroelectrochemical Probing of Glycerol Electrooxidation Reaction -- 4.2.2.3 Spectroelectrochemical Probing of Glucose Electrooxidation Reaction -- 4.2.3 Electrochemical Synthesis of Sustainable Chemicals: Electroanalytical Study -- 4.2.4 Electrochemical Energy Conversion: Direct Carbohydrates Alkaline Fuel Cells -- 4.3 Metal Nanoparticles at Work in Bionanotechnology -- 4.3.1 Metal Nanoparticles at Work in Closed-biological Conditions: Toward Implantable Devices -- 4.3.2 Activation of Implantable Biomedical and Information Processing Devices by Fuel Cells -- 4.4 Conclusions -- Acknowledgments -- Notes -- References.
Part 2 Engineering of Applied Electrode Materials -- 5 Polyoxometalate-based Modified Electrodes for Electrocatalysis: From Molecule Sensing to Renewable Energy-related Applications -- 5.1 Introduction -- 5.2 POMs and POMs-based (Nano)Composites -- 5.2.1 Polyoxometalates -- 5.2.2 Polyoxometalate-based (Nano)Composites -- 5.2.3 General Electrochemical Behavior of POMs -- 5.3 POMs-based Electrocatalysis for Sensing Applications -- 5.3.1 Reductive Electrocatalysis -- 5.3.1.1 Nitrite Reduction -- 5.3.1.2 Bromate Reduction -- 5.3.1.3 Iodate Reduction -- 5.3.1.4 Hydrogen Peroxide Reduction Reaction -- 5.3.2 Oxidative Electrocatalysis -- 5.3.2.1 Dopamine and Ascorbic Acid Oxidations -- 5.3.2.2 L-Cysteine Oxidation -- 5.4 POMs-based Electrocatalysis for Energy Storage and Conversion Applications -- 5.4.1 Oxygen Evolution Reaction -- 5.4.2 Hydrogen Evolution Reaction -- 5.4.3 Oxygen Reduction Reaction -- 5.5 Concluding Remarks -- Acknowledgments -- List of Abbreviations and Acronyms -- References -- 6 Electrochemical Sensors Based on Ordered Mesoporous Carbons -- 6.1 Introduction -- 6.2 Electrochemical Sensors Based on OMCs -- 6.3 Electrochemical Sensors Based on Redox Mediators/OMCs -- 6.4 Electrochemical Sensors Based on NPs/OMCs -- 6.4.1 Electrochemical Sensors Based on Transition Metal NPs/OMCs -- 6.4.2 Electrochemical Sensors Based on Noble Metal NPs/OMCs -- 6.5 Conclusions -- Acknowledgments -- References -- 7 Non-precious Metal Oxide and Metal-free Catalysts for Energy Storage and Conversion -- 7.1 Metal-Nitrogen-Carbon (M-N-C) Electrocatalysts -- 7.1.1 Introduction -- 7.1.2 Catalysts for Hydrogen Evolution Reaction -- 7.1.3 Catalysts for Oxygen Evolution Reaction -- 7.1.4 Catalysts for Oxygen Reduction Reaction -- 7.1.5 None-heat-treated M-N-C Electrocatalysts -- 7.1.6 Heat-treated M-N-C Electrocatalysts -- 7.1.7 Conclusion.
7.2 Transition Metal Oxide Electrode Materials for Oxygen Evolution Reaction, Oxygen Reduction Reaction and Bifuctional Purposes (OER/ORR) -- 7.2.1 Introduction -- 7.2.2 Oxygen Evolution Reaction -- 7.2.2.1 Synthesis Methodology -- 7.2.2.2 OER Properties of Catalyst -- 7.2.2.3 Morphology or Microstructure Analysis of TM Oxide for OER -- 7.2.3 Oxygen Reduction Reaction -- 7.2.3.1 Morphology or Microstructure Analysis -- 7.2.3.2 ORR Properties of Catalyst -- 7.2.3.3 Synthesis Methodology -- 7.2.3.4 Theoretical Analyses of ORR Active Catalysts -- 7.2.4 Hydrogen Evolution Reaction -- 7.2.5 Bifunctional Oxide Materials (OER/ORR) -- 7.2.5.1 Bifunctional Properties of Catalyst -- 7.2.5.2 Dopant Effects -- 7.2.5.3 Morphology or Microstructure Analysis -- 7.2.5.4 Synthesis Methodology -- 7.2.6 Conclusion -- 7.3 Transition Metal Chalcogenides, Nitrides, Oxynitrides, and Carbides -- 7.3.1 Transition Metal Chalcogenides -- 7.3.2 Transition Metal Nitrides -- 7.3.3 Transition Metal Oxynitrides -- 7.3.4 Transition Metal Carbides -- 7.4 Oxygen Reduction Reaction for Metal-free -- 7.4.1 Different Doping Synthesis Strategies -- 7.4.2 ORR Activity in Different Carbon Source -- 7.4.2.1 1D Carbon Nanotube Doped -- 7.4.2.2 2D Graphene -- 7.4.3 Oxygen Evolution Reaction -- References -- 8 Study of Phosphate Polyanion Electrodes and Their Performance with Glassy Electrolytes: Potential Application in Lithium Ion Solid-state Batteries -- 8.1 Introduction -- 8.2 Glass Samples Preparation -- 8.3 Nanostructured Composites Sample Preparation -- 8.4 X-ray Powder Diffraction -- 8.4.1 X-ray Powder Diffraction Patterns of Glassy Materials -- 8.4.2 X-ray Powder Diffraction Patterns of Composites Materials -- 8.5 Thermal Analysis -- 8.5.1 Thermal Analysis of Glassy Systems -- 8.5.2 Thermal Analysis of Nanocomposites Materials -- 8.6 Density and Appearance.
8.6.1 Density and Oxygen Packing Density of Glassy Materials -- 8.6.2 Materials' Appearance -- 8.6.2.1 Glasses -- 8.6.2.2 Nanostructured Composites -- 8.7 Structural Features -- 8.7.1 Glassy Materials -- 8.7.1.1 FTIR and Raman Spectroscopy -- 8.7.2 Nanocomposites Materials -- 8.8 Electrical Behavior -- 8.8.1 Glasses Materials -- 8.8.2 Composite Materials -- 8.9 All-solid-state Lithium Ion Battery -- 8.10 Final Remarks -- Acknowledgments -- References -- 9 Conducting Polymer-based Hybrid Nanocomposites as Promising Electrode Materials for Lithium Batteries -- 9.1 Introduction -- 9.2 Electrode Materials of Lithium Batteries Based on Conducting Polymer-based Nanocomposites Prepared by Chemical and Electrochemical Methods -- 9.2.1 Host-guest Hybrid Nanocomposites -- 9.2.2 Core-shell Hybrid Nanocomposites -- 9.3 Mechanochemical Preparation of Conducting Polymer-based Hybrid Nanocomposites as Electrode Materials of Lithium Batteries -- 9.3.1 Principle of Mechanochemical Synthesis -- 9.3.2 Mechanochemically Prepared Conducting Polymer-based Hybrid Nanocomposite Materials for Lithium Batteries -- 9.4 Conclusion -- References -- 10 Energy Applications: Fuel Cells -- 10.1 Introduction -- 10.2 Catalyst Supports for Fuel Cell Electrodes -- 10.2.1 Commercial Carbon Supports -- 10.2.2 Carbon Nanotube (CNT) Supports -- 10.2.3 Graphene Supports -- 10.2.4 Mesoporous Carbon Supports -- 10.2.5 Other Carbon Supports -- 10.2.6 Conducting Polymer Supports -- 10.2.7 Hybrid Supports -- 10.2.8 Non-carbon Supports -- 10.3 Anode and Cathode Catalysts for Fuel Cells -- 10.3.1 Anode Catalysts -- 10.3.2 Cathode Catalysts -- 10.4 Conclusions -- References -- 11 Novel Photoelectrocatalytic Electrodes Materials for Fuel Cell Reactions -- 11.1 Introduction -- 11.2 Basic Understanding on the Improved Catalytic Performance of Photo-responsive Metal/Semiconductor Electrodes.
11.3 Synthetic Methods for Metal/Semiconductor Electrodes.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.