ORPP logo
Image from Google Jackets

Fluid Dynamics for the Study of Transonic Flow.

By: Material type: TextTextSeries: Oxford Engineering Science SeriesPublisher: Oxford : Oxford University Press, Incorporated, 1990Copyright date: ©1990Edition: 1st edDescription: 1 online resource (211 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780195362954
Subject(s): Genre/Form: Additional physical formats: Print version:: Fluid Dynamics for the Study of Transonic FlowDDC classification:
  • 629.132/304
LOC classification:
  • TL571.R27 1990
Online resources:
Contents:
Intro -- CONTENTS -- Introduction -- 1. BRIEF REVIEW OF THE BASIC LAWS OF AERODYNAMICS -- Problems -- 2. THE THEORY OF INVISCID TRANSONIC FLOW -- 2.1. One-dimensional transonic flow -- 2.2. The basic three-dimensional theory -- 2.2.1. An application of the basic theory -- 2.3. Simplified transonic theory for small perturbations -- 2.4. Transonic shock relations -- 2.5. Similarity rules -- 2.5.1. Similarity rules for two-dimensional subsonic and supersonic flows -- 2.5.2. Similarity rule for two-dimensional transonic flow -- 2.5.3. Similarity rule for axisymmetric subsonic and supersonic flows -- 2.5.4. Similarity rule for axisymmetric transonic flow -- 2.6. Solutions through asymptotic expansions -- 2.6.1. Higher order transonic equations -- 2.6.2. Asymptotic expansions -- 2.7. The hodograph method -- 2.7.1. Limitations of the hodograph approach -- 2.7.2. The basic hodograph equations -- 2.7.3. Some important applications of the hodograph method -- 2.7.4. The transonic shock polar curves -- Problems -- 3. NONSTEADY TRANSONIC FLOW -- 3.1. General observations -- 3.2. Nonsteady transonic theory -- 3.3. The pressure coefficient from nonsteady theory -- Problems -- 4. LIFT SLOPE AND DRAG RISE AT SONIC SPEED -- 5. ANALYTICAL SOLUTIONS OF THE TRANSONIC CONTINUITY EQUATION -- 5.1. Solutions of transonic equations by linearization -- 5.1.1. Solutions through local linearization -- 5.2. The equivalence rule -- 5.2.1. The relative magnitudes of &amp -- #8706 -- u/&amp -- #8706 -- x and &amp -- #8706 -- v/&amp -- #8706 -- y (+&amp -- #8706 -- w/&amp -- #8706 -- z) in slender-body flow -- 5.2.2. Basic considerations leading to the equivalence rule -- 5.2.3. The formulation of the equivalence rule by Oswatitsch and Keune -- 5.2.4. Comparison of the equivalence rule with the parabolic method of flow computations.
5.2.5. The area rule as the logical extension of the equivalence rule -- 5.3. Transonic flow with heat addition -- 5.3.1. The equation for inviscid flow with heat addition -- 5.3.2. The effect of heat addition on aircraft performance -- Problems -- 6. VISCOUS TRANSONIC FLOW -- 6.1. Introduction -- 6.2. The specific problems of transonic flow caused by viscous effects -- 6.2.1. Shock wave-boundary layer interaction -- 6.2.2. The shape of the transonic shock wave -- 6.2.3. The longitudinal (compressive) viscosity -- 6.3. The differential equations of viscous transonic flow -- 6.3.1. Formulation of the longitudinal viscosity -- 6.3.2. The small-perturbation equation of viscous transonic flow -- 6.4. Applications of the viscous transonic equation -- 6.4.1. Similarity solutions of partial differential equations -- 6.4.2. Viscous flow through a Laval nozzle -- 6.4.3. Viscous radial and spiral flow -- Problems -- 7. NUMERICAL METHODS OF TRANSONIC FLOW COMPUTATION -- 7.1. Introduction -- 7.2. The relaxation method -- 7.3. The time-dependent method -- 7.4. Artificial viscosity -- 7.5. Convergence and concluding remarks -- Problems -- 8. STEPS TOWARD THE OPTIMUM TRANSONIC AIRCRAFT -- 8.1. The basic problems -- 8.2. The supercritical airfoil -- 8.3. The longitudinal viscosity as a possible factor in the correct description of transonic flight -- 9. TRANSONIC WIND TUNNEL TESTING -- REFERENCES -- INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- CONTENTS -- Introduction -- 1. BRIEF REVIEW OF THE BASIC LAWS OF AERODYNAMICS -- Problems -- 2. THE THEORY OF INVISCID TRANSONIC FLOW -- 2.1. One-dimensional transonic flow -- 2.2. The basic three-dimensional theory -- 2.2.1. An application of the basic theory -- 2.3. Simplified transonic theory for small perturbations -- 2.4. Transonic shock relations -- 2.5. Similarity rules -- 2.5.1. Similarity rules for two-dimensional subsonic and supersonic flows -- 2.5.2. Similarity rule for two-dimensional transonic flow -- 2.5.3. Similarity rule for axisymmetric subsonic and supersonic flows -- 2.5.4. Similarity rule for axisymmetric transonic flow -- 2.6. Solutions through asymptotic expansions -- 2.6.1. Higher order transonic equations -- 2.6.2. Asymptotic expansions -- 2.7. The hodograph method -- 2.7.1. Limitations of the hodograph approach -- 2.7.2. The basic hodograph equations -- 2.7.3. Some important applications of the hodograph method -- 2.7.4. The transonic shock polar curves -- Problems -- 3. NONSTEADY TRANSONIC FLOW -- 3.1. General observations -- 3.2. Nonsteady transonic theory -- 3.3. The pressure coefficient from nonsteady theory -- Problems -- 4. LIFT SLOPE AND DRAG RISE AT SONIC SPEED -- 5. ANALYTICAL SOLUTIONS OF THE TRANSONIC CONTINUITY EQUATION -- 5.1. Solutions of transonic equations by linearization -- 5.1.1. Solutions through local linearization -- 5.2. The equivalence rule -- 5.2.1. The relative magnitudes of &amp -- #8706 -- u/&amp -- #8706 -- x and &amp -- #8706 -- v/&amp -- #8706 -- y (+&amp -- #8706 -- w/&amp -- #8706 -- z) in slender-body flow -- 5.2.2. Basic considerations leading to the equivalence rule -- 5.2.3. The formulation of the equivalence rule by Oswatitsch and Keune -- 5.2.4. Comparison of the equivalence rule with the parabolic method of flow computations.

5.2.5. The area rule as the logical extension of the equivalence rule -- 5.3. Transonic flow with heat addition -- 5.3.1. The equation for inviscid flow with heat addition -- 5.3.2. The effect of heat addition on aircraft performance -- Problems -- 6. VISCOUS TRANSONIC FLOW -- 6.1. Introduction -- 6.2. The specific problems of transonic flow caused by viscous effects -- 6.2.1. Shock wave-boundary layer interaction -- 6.2.2. The shape of the transonic shock wave -- 6.2.3. The longitudinal (compressive) viscosity -- 6.3. The differential equations of viscous transonic flow -- 6.3.1. Formulation of the longitudinal viscosity -- 6.3.2. The small-perturbation equation of viscous transonic flow -- 6.4. Applications of the viscous transonic equation -- 6.4.1. Similarity solutions of partial differential equations -- 6.4.2. Viscous flow through a Laval nozzle -- 6.4.3. Viscous radial and spiral flow -- Problems -- 7. NUMERICAL METHODS OF TRANSONIC FLOW COMPUTATION -- 7.1. Introduction -- 7.2. The relaxation method -- 7.3. The time-dependent method -- 7.4. Artificial viscosity -- 7.5. Convergence and concluding remarks -- Problems -- 8. STEPS TOWARD THE OPTIMUM TRANSONIC AIRCRAFT -- 8.1. The basic problems -- 8.2. The supercritical airfoil -- 8.3. The longitudinal viscosity as a possible factor in the correct description of transonic flight -- 9. TRANSONIC WIND TUNNEL TESTING -- REFERENCES -- INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.