Material Forming Processes : Simulation, Drawing, Hydroforming and Additive Manufacturing.
Material type:
- text
- computer
- online resource
- 9781119361404
- TA403.8.R33 2016
Cover -- Title Page -- Copyright -- Contents -- Preface -- 1. Forming Processes -- 1.1. Introduction -- 1.2. Different processes -- 1.2.1. Smelting -- 1.2.2. Machining -- 1.2.3. Powder metallurgy -- 1.3. Hot and cold forming -- 1.3.1. Influence of the static parameters -- 1.3.2. Hydroforming -- 1.3.3. The limitations of the process -- 1.3.4. Deep drawing -- 1.4. Experimental characterization -- 1.5. Forming criteria -- 1.5.1. Influence of the structure of sheet metal -- 1.5.2. Physical strain mechanisms -- 1.5.3. Different criteria -- 2. Contact and Large Deformation Mechanics -- 2.1. Introduction -- 2.2. Large transformation kinematics -- 2.2.1. Kinematics of the problem in spatial coordinates -- 2.3. Transformation gradient -- 2.4. Strain measurements -- 2.4.1. Polar decomposition of F -- 2.4.2. Strain rate tensor -- 2.4.3. Canonical decomposition of F -- 2.4.4. Kinematics of the problem in convective coordinates -- 2.4.5. Transformation tensor -- 2.4.6. Strain rate measures -- 2.4.7. Strain tensor -- 2.5. Constitutive relations -- 2.5.1. Large elastoplastic transformations -- 2.5.2. Kinematic decomposition of the transformation -- 2.6. Incremental behavioral problem -- 2.6.1. Stress incrementation -- 2.6.2. Strain incrementation -- 2.6.3. Solution of the behavior problem -- 2.7. Definition of the P.V.W. in major transformations -- 2.7.1. Equilibrium equations -- 2.7.2. Definition of the P.V.W. -- 2.7.3. Incremental formulation -- 2.8. Contact kinematics -- 2.8.1. Definition of the problem and notations -- 2.8.2. Contact formulation -- 2.8.3. Formulation of the friction problem -- 2.8.4. Friction laws -- 2.8.5. Coulomb's law -- 2.8.6. Tresca's law -- 3. Stamping -- 3.1. Introduction -- 3.2. Forming limit curve -- 3.3. Stamping modeling: incremental problem -- 3.3.1. Modeling of sheet metal.
3.3.2. Spatial discretization: finite elements method -- 3.3.3. Choice of sheet metal and finite element approximation -- 3.4. Modeling tools -- 3.4.1. Tool surface meshing into simple geometry elements -- 3.4.2. Analytical representation of tools -- 3.4.3. Bezier patches -- 3.5. Stamping numerical processing -- 3.5.1. Problem statement -- 3.5.2. The augmented Lagrangian method -- 3.6. Numerical simulations -- 3.6.1. Sollac test -- 4. Hydroforming -- 4.1. Introduction -- 4.2. Hydroforming -- 4.2.1. Tube hydroforming -- 4.2.2. Sheet metal hydroforming -- 4.3. Plastic instabilities in hydroforming -- 4.3.1. Tube buckling -- 4.3.2. Wrinkling -- 4.3.3. Necking -- 4.3.4. Springback -- 4.4. Forming limit curve -- 4.5. Material characterization for hydroforming -- 4.5.1. Tensile testing -- 4.5.2. Bulge testing -- 4.6. Analytical modeling of a inflation test -- 4.6.1. Hill48 criterion in planar stresses -- 4.7. Numerical simulation -- 4.8. Mechanical characteristic of tube behavior -- 5. Additive Manufacturing -- 5.1. Introduction -- 5.2. RP and stratoconception -- 5.3. Additive manufacturing definitions -- 5.4. Principle -- 5.4.1. Principle of powder bed laser sintering/melting -- 5.4.2. Principle of laser sintering/melting by projecting powder -- 5.5. Additive manufacturing in the IT-based development process -- 5.5.1. Concept "from the object to the object" -- 5.5.2. Key element of the IT development process -- 6. Optimization and Reliability in Forming -- 6.1. Introduction -- 6.2. Different approaches to optimization process -- 6.2.1. Limitations of the deterministic approaches -- 6.3. Characterization of forming processes by objective functions -- 6.4. Deterministic and probabilistic optimization of a T-shaped tube -- 6.4.1. Problem description -- 6.4.2. Choice of the objective function and definition of the stresses.
6.4.3. Choice of the uncertain parameters -- 6.4.4. Choice of the objective function and the stresses -- 6.4.5. Deterministic formulation of the optimization problem -- 6.4.6. Probabilistic formulation of the optimization problem -- 6.4.7. Optima sensitivity to uncertainties -- 6.5. Deterministic and optimization-based reliability of a tube with two expansion regions -- 6.5.1. Problem description -- 6.5.2. Deterministic and reliabilist formulation of the optimization problem -- 6.6. Optimization-based reliability of circular sheet metal hydroforming -- 6.6.1. Problem description -- 6.6.2. Construction of the objective function and of the stresses -- 6.6.3. Effects diagram -- 6.6.4. Deterministic solution of the optimization problem -- 6.6.5. Reliabilist solution of the optimization problem -- 6.6.6. Effect of uncertainties on the optimal variables -- 6.7. Deterministic and robust optimization of a square plate -- 6.7.1. Robust resolution of the optimization problem -- 6.8. Optimization of thin sheet metal -- 7. Application of Metamodels to Hydroforming -- 7.1. Introduction -- 7.2. Sources of uncertainty in forming -- 7.3. Failure criteria -- 7.3.1. Failure criteria for necking -- 7.3.2. Failure criteria for wrinkling -- 7.4. Evaluation strategy of the probability of failure -- 7.4.1. Finite element model and choice of uncertainty parameters -- 7.4.2. Identification of failure modes and definition of boundary states -- 7.4.3. Identification of elements and critical areas -- 7.5. Critical strains probabilistic characterization -- 7.5.1. Choice of numerical experimental design -- 7.5.2. Construction of metamodels -- 7.5.3. Validation and statistical analysis of metamodels -- 7.5.4. Fitting of distributions -- 7.6. Necking and wrinkling probabilistic study -- 7.7. Effects of the correlations on the probability of failure.
7.7.1. Spatial estimation of the probability of failures -- 8. Parameters Identification in Metal Forming -- 8.1. Introduction -- 8.2. Identification methods -- 8.2.1. Validation test -- 8.3. Welded tube hydroforming -- 8.3.1. Thin sheet metal hydroforming -- Appendices -- Appendix 1. Optimization in Mechanics -- Appendix 2. Reliability in Mechanics -- Appendix 3. Metamodels -- Bibliography -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.