Reactive Oxygen, Nitrogen and Sulfur Species in Plants : Production, Metabolism, Signaling and Defense Mechanisms.
Material type:
- text
- computer
- online resource
- 9781119468660
- QK754 .R433 2019
Intro -- Volume1 -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Section I Reactive Oxygen Species Metabolism and Antioxidant Defense -- Chapter 1 Regulated Suicide for Survival: Toward Programmed Cell Death During Reactive Species Mediated‐Oxidative Stress of Plant Cells -- 1.1 Introduction -- 1.2 PCD: Versatile But Programmed in Functional Plant Biology -- 1.2.1 Experimental Evidence of PCD in Plant System -- 1.3 PCD through ROS Network in Plant Cell -- 1.3.1 Cellular Organelles: Hub of PCD Components -- 1.3.1.1 PCD: The Chloroplastic Connection -- 1.3.1.2 PCD: The Mitochondrial Drive -- 1.3.1.3 PCD: The Vacuolar Mediation -- 1.3.2 Inter-Organelle Cross Talk in PCD Programming -- 1.4 Mechanisms of ROS-Mediated PCD in Plant Cell -- 1.4.1 ROS-Mediated Disruption of Antioxidant System en Route to PCD -- 1.4.2 ROS-Mediated Disruption of Oxidative Metabolism en Route to PCD -- 1.4.3 ROS-Induced Electrolyte Leakage in PCD Programming -- 1.4.4 ROS-Induced Release of Cytochrome c en Route to PCD -- 1.4.5 Caspase Like Cascade and Its Cross-Talk with Cytochrome c, and Nuclease in Plant PCD -- 1.4.6 ROS to PCD: Cross-Talk via Proteasome Complex -- 1.5 ROS Signaling Network in Regulating Plant PCD -- 1.5.1 Cross Talk Between ROS and RNS Toward PCD -- 1.5.2 Interactive Hormone Signaling Toward PCD via ROS -- 1.5.3 MAP Kinase Cascade in ROS-Driven PCD Events -- 1.5.4 Lipid Signaling and PCD -- 1.6 Future Prospects -- References -- Chapter 2 Iron and Its Catalytic Properties on Radical Generation: Role of Chelators on the Labile Iron Pool (LIP) -- 2.1 Introduction -- 2.2 Iron-Dependent Oxidative Metabolism -- 2.3 Role of Chelators on Fe-Dependent Oxidant Production -- 2.4 Cellular Fe Distribution in Plants and Animals -- 2.5 Experimental Alternatives Related to the Operational Definition of LIP.
2.6 LIP Changes Under Stress Situations in Plants and Animals -- 2.7 Conclusions -- Acknowledgments -- References -- Chapter 3 Superoxide Dismutases (SODs) and Their Role in Regulating Abiotic Stress induced Oxidative Stress in Plants -- 3.1 Introduction -- 3.2 Generation of Reactive Oxygen Species (ROS) and Their Effects in Plants Experiencing Abiotic Stress -- 3.2.1 ROS Generation in Plants -- 3.2.2 Abiotic Stress Induced ROS Generation in Plants -- 3.2.3 ROS Induced Oxidative Damage in Plants -- 3.2.4 ROS Detoxification System in Plants -- 3.3 Superoxide Dismutase (SOD) Isoenzymes in Plants -- 3.3.1 Copper Zinc SODs (Cu-ZnSOD) -- 3.3.2 Iron Superoxide Dismutase (FeSOD) and Manganese Superoxide Dismutase (MnSOD) -- 3.3.3 Cambialistic Superoxide Dismutase (Fe/MnSOD) -- 3.4 Regulation, Expression and Interaction Network of Superoxide Dismutase Isozymes -- 3.5 SOD Mediated Improvement in Abiotic Stress Tolerance in Plants -- 3.6 Concluding Remarks and Future Prospects -- Acknowledgments -- References -- Chapter 4 The Role of Ascorbate‐Glutathione Pathway in Reactive Oxygen Species Balance Under Abiotic Stresses -- 4.1 Introduction -- 4.2 Water Availability -- 4.2.1 Drought -- 4.2.2 Flooding -- 4.3 Salinity -- 4.4 Extreme Temperatures -- 4.4.1 Chilling -- 4.4.2 Heat -- 4.5 Insolation -- 4.5.1 High Insolation -- 4.5.2 Low Insolation -- 4.6 Metals (Metalloids) -- 4.6.1 Al -- 4.6.2 Cd -- 4.6.3 Pb -- 4.6.4 Cu -- 4.6.5 Cr -- 4.7 Nanoparticles -- 4.8 Combination of Stresses -- 4.9 Conclusion -- Acknowledgment -- References -- Chapter 5 Oxidative Stress and Antioxidant Defense Under Combined Waterlogging and Salinity Stresses -- 5.1 Introduction -- 5.2 Reactive Oxygen Species (ROS) and Oxidative Stress -- 5.3 Effects of Oxidative Stress -- 5.3.1 Lipid Peroxidation -- 5.3.2 Membrane Injury -- 5.3.3 Ion Homeostasis and ROS Metabolism.
5.3.4 Antioxidative Defense System -- 5.4 Enzymatic Components -- 5.4.1 Superoxide Dismutase (SOD) -- 5.4.2 Catalase (CAT) -- 5.4.3 Ascorbate Peroxidase (APX) -- 5.4.4 Peroxidases (POX) -- 5.4.5 Glutathione Reductase (GR) -- 5.4.6 Dehydroascorbate Reductase (DHAR) -- 5.4.7 Monodehydroascorbate Reductase (MDHAR) -- 5.5 Non-enzymatic Components -- 5.5.1 Ascorbate Content -- 5.5.2 Glutathione Content -- 5.6 Aerenchyma Formation and Root Modifications -- 5.7 Conclusions and Future Projections -- References -- Chapter 6 Role of Polyamines in Protecting Plants from Oxidative Stress -- 6.1 Introduction -- 6.2 Discovery of Polyamines -- 6.2.1 Biosynthesis, Catabolism and Biosynthetic Inhibitor of Polyamines -- 6.2.2 Role of Polyamines in Protecting Plants from Oxidative Stress -- 6.3 Important Physiological Effects of Polyamines in Plants -- 6.3.1 Interaction of Polyamines with ROS -- 6.3.2 Cell Proliferation -- 6.3.3 Stress Response -- 6.3.4 Gene Expression -- 6.4 Role of Polyamines in Combating Oxidative Stress -- 6.4.1 Polyamines and Detoxification of ROS -- 6.5 Polyamine and H2O2 -- 6.6 Exogenous Polyamine -- 6.7 Conclusion and Future Prospective -- Abbreviations -- References -- Chapter 7 Role of Glutathione in Plant Abiotic Stress Tolerance -- 7.1 Introduction -- 7.2 GSH Metabolism in Plants -- 7.3 GSH Confers Protection during Abiotic Stress -- 7.3.1 GSH: Variable Redox States -- 7.3.2 The AsA-GSH Cycle (AGC) -- 7.3.3 GSH as an Antioxidant -- 7.3.4 Glutathione S-Transferases (GSTs) Protect against Abiotic Stress -- 7.3.5 GSH Regulation of Transcription and Nitric Oxide Signaling during Stress -- 7.4 GSH Regulates Abiotic Stress Tolerance -- 7.4.1 Exogenous Application of GSH -- 7.4.2 Genetic Engineering Approach -- 7.4.3 The Sub-cellular Distribution of GSH in Response to Abiotic Stresses -- 7.4.3.1 Vacuoles -- 7.4.3.2 Nuclei.
7.4.3.3 Chloroplasts and Peroxisomes -- 7.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 8 Molecular Approaches in Enhancing Antioxidant Defense in Plants -- 8.1 Introduction -- 8.2 Plant Responses to Environmental Stresses -- 8.3 Approaches for Stress Tolerance -- 8.4 Genetic Engineering for Environmental Stresses -- 8.4.1 Genomics -- 8.4.2 Proteomics -- 8.4.3 Metabolomics -- 8.5 Conclusion and Future Prospects -- References -- Chapter 9 Omics in Oxidative Stress Tolerance in Crops -- 9.1 Introduction -- 9.2 Genomics -- 9.2.1 Structural Genomics -- 9.2.1.1 Genome Sequencing -- 9.2.1.2 Molecular Markers -- 9.3 Transcriptomics -- 9.3.1 Hybridization-Based Approaches -- 9.3.1.1 Suppression Subtractive Hybridization (SSH) -- 9.3.1.2 Microarrays -- 9.3.2 Sequencing-Based Approaches -- 9.3.2.1 Serial Analysis of Gene Expression (SAGE) -- 9.3.2.2 RNA-Sequencing -- 9.3.3 Plant Transcriptomics Applications -- 9.3.3.1 Salt Tolerance -- 9.3.3.2 Drought Tolerance -- 9.3.3.3 Cold Tolerance -- 9.3.3.4 Nutrient Deficiency and Toxicity -- 9.4 Proteomics -- 9.4.1 Plant Proteomics Applications -- 9.4.1.1 Salt Tolerance -- 9.4.1.2 Drought Tolerance -- 9.4.1.3 Cold Tolerance -- 9.4.1.4 Nutrient Deficiency -- 9.5 Metabolomics -- 9.5.1 Plant Metabolomics Applications -- 9.5.1.1 Salt Tolerance -- 9.5.1.2 Drought Tolerance -- 9.5.1.3 Low-Oxygen Tolerance -- 9.5.1.4 Cold Tolerance -- 9.5.1.5 Nutrient Deficiency and Toxicity -- 9.5.1.6 Oxidative Stress -- 9.6 Conclusions and Outlook -- References -- Chapter 10 Role of Reactive Oxygen Species Signaling in Plant Growth and Development -- 10.1 Introduction -- 10.2 ROS Generation -- 10.3 Deleterious Effects of Different Types of ROS on Plant Cells -- 10.4 ROS Detoxification -- 10.5 Regulation of Antioxidant Genes Expression by Different Types of ROS -- 10.5.1 Singlet Oxygen (O21).
10.5.2 Superoxide Radical (O2) -- 10.5.3 Hydrogen Peroxide (H2O2) -- 10.6 ROS and Redox Signaling -- 10.7 ROS as Long Distance Signal and ROS Waves -- 10.8 ROS Signaling with Hormonal Signaling Networks -- 10.8.1 Abscisic Acid (ABA) -- 10.8.2 Ethylene (ET) -- 10.8.3 Auxin -- 10.8.4 Gibberellins (GAs) -- 10.8.5 Salicylic Acid (SA) -- 10.8.6 Jasmonic Acid (JA) -- 10.8.7 Brassinosteroids (BRs) -- 10.9 Processes Regulated by ROS -- 10.9.1 Plant Growth and Development -- 10.9.2 Cell Death -- 10.9.3 Acclimation to Stressful Conditions -- 10.10 Conclusion and Perspectives -- Abbreviations -- References -- Chapter 11 Oxidative Stress and Antioxidant Defense in Germinating Seeds: A Q& -- A Session -- 11.1 Introduction -- 11.2 Where Are the ROS Production Sites in Seeds? -- 11.3 Where Does ROS Act at a Molecular Level? -- 11.3.1 ROS vs. Lipids -- 11.3.2 ROS vs. Proteins -- 11.3.3 ROS vs. Nucleic Acids -- 11.4 How Do Seeds Protect Themselves from ROS Overdose? -- 11.4.1 Passive Mechanisms -- 11.4.2 Active Mechanisms -- 11.4.3 DDR and ROS in Seeds -- 11.5 How Does ROS Influence Seed Dormancy? -- 11.6 How Does the Crosstalk Between ROS and Phytohormones Influences Seed Germination? -- 11.7 Which Are the Roles of ROS in Seed Priming and Seed Longevity? -- 11.7.1 ROS vs. Seed Priming -- 11.7.2 ROS vs. Seed Longevity -- 11.8 Concluding Remarks -- References -- Chapter 12 Oxidative Stress and Antioxidant Defense in Plants Under Salinity -- 12.1 Introduction -- 12.2 Types of ROS and Damages -- 12.3 Sites of ROS Production -- 12.3.1 Chloroplast -- 12.3.2 Peroxisomes -- 12.3.3 Mitochondria -- 12.3.4 Apoplast -- 12.4 Antioxidant Machinery -- 12.4.1 Enzymatic Antioxidants -- 12.4.1.1 Superoxide Dismutase -- 12.4.1.2 Catalase -- 12.4.1.3 Ascorbate Peroxidise -- 12.4.1.4 Guaiacol Peroxidise -- 12.4.1.5 Glutathione Reductase -- 12.4.1.6 Monodehydroascorbate Reductase.
12.4.1.7 Dehydroascorbate Reductase.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.