ORPP logo
Image from Google Jackets

Handbook of Graphene, Volume 4 : Composites.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (600 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119469698
Subject(s): Genre/Form: Additional physical formats: Print version:: Handbook of Graphene, Volume 4LOC classification:
  • TA418.9.C6 .H363 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Graphene Composites -- 1.1 Introduction -- 1.2 History of Graphene -- 1.3 Synthesis of Graphene -- 1.3.1 Top-Down Approach -- 1.3.1.1 Exfoliation and Cleavage -- 1.3.1.2 Chemically Derived Graphene -- 1.3.2 Bottom-Up Approach -- 1.3.2.1 Chemical Vapor Deposition -- 1.3.2.2 Epitaxial Growth -- 1.3.3 Other Methods -- 1.4 Characterization and Properties -- 1.4.1 Characterization -- 1.4.1.1 Optical Imaging of Graphene Layers -- 1.4.1.2 Atomic Force Microscopy (AFM) -- 1.4.1.3 Transmission Electron Microscopy (TEM) -- 1.4.1.4 Raman Spectroscopy -- 1.4.2 Properties -- 1.4.2.1 Electrical Transport Property -- 1.4.2.2 Optical Properties -- 1.4.2.3 Mechanical Properties -- 1.4.2.4 Thermal Properties -- 1.4.3 Application -- 1.5 Graphene-Based Composites -- 1.5.1 Graphene-Polymer Composites -- 1.5.1.1 Synthesis of Graphene-Reinforced Polymer Composite -- 1.5.1.2 Mechanical Properties -- 1.5.1.3 Electrical Properties -- 1.5.1.4 Thermal Conductivity -- 1.5.1.5 Other Properties -- 1.5.1.6 Application -- 1.5.2 Graphene-Nanoparticle Composites -- 1.5.2.1 Synthesis of Graphene-Nanoparticle Composites -- 1.5.2.2 Properties -- 1.6 Future Prospects -- Acknowledgment -- References -- 2 Graphene-Reinforced Advanced Composite Materials -- 2.1 Introduction -- 2.2 Graphene-Metal Matrix Composites (MMCs) -- 2.2.1 Processing of MMCs -- 2.2.1.1 Powder Metallurgy -- 2.2.1.2 Melting and Solidification -- 2.2.1.3 Electrochemical Deposition -- 2.2.1.4 Thermal Spray -- 2.2.1.5 Other Techniques -- 2.2.2 Properties of the Graphene-Reinforced MMCs -- 2.2.2.1 Mechanical Properties -- 2.2.2.2 Corrosion Properties -- 2.2.2.3 Tribological Properties -- 2.2.2.4 Other Properties -- 2.3 Graphene-Reinforced Polymer Matrix Composites (PMCs) -- 2.3.1 Preparation of Graphene Polymer Composites -- 2.3.1.1 Melt Blending.
2.3.1.2 Solution Compounding -- 2.3.1.3 In Situ Polymerization -- 2.3.1.4 Other Methods -- 2.3.2 Properties of Graphene-Reinforced PMCs -- 2.3.2.1 Electrical Properties -- 2.3.2.2 Mechanical Properties -- 2.3.2.3 Thermal Properties -- 2.3.2.4 Corrosion Properties -- 2.4 Graphene-Reinforced Ceramic Matrix Composites (CMCs) -- 2.4.1 Processing Methods -- 2.4.1.1 Types of Graphene Fillers -- 2.4.1.2 Powder Processing -- 2.4.1.3 Densification -- 2.4.1.4 Thermal/Cold/Plasma Spraying -- 2.4.1.5 Electrophoretic Deposition (EPD) -- 2.4.2 Performance -- 2.4.2.1 Mechanical Properties -- 2.4.2.2 Electrical Properties -- 2.5 Applications of Graphene-Reinforced Composites -- 2.5.1 Low Friction and Wear Components -- 2.5.2 Intelligent Interfaces and Anti-Corrosion Coatings -- 2.5.3 Antibacterial and Biocompatible Implants -- 2.5.4 Flame-Retardant Materials -- 2.6 Conclusion -- References -- 3 Graphene-Based Composite Materials -- 3.1 Introduction -- 3.2 Graphene Composites -- 3.2.1 Graphene Filled Polymer Composites -- 3.2.1.1 Graphene Filled Polymers -- 3.2.1.2 Layered Graphene Polymers -- 3.2.1.3 Polymer-Functionalized Graphene Nanosheets -- 3.2.2 Graphene Nanostructure Composites -- 3.2.3 Hybrid Graphene/Microfiber Composites -- 3.2.4 Graphene Colloids and Coatings -- 3.2.5 Graphene Bioactive Composites -- 3.3 Processing Routes for Graphene Composites -- 3.3.1 Melt Bending/Mixing -- 3.3.2 Solution Blending/Mixing -- 3.3.3 In Situ Polymerization/Crystallization -- 3.3.4 Layer-by-Layer Assembly -- 3.3.5 Other Processing Techniques -- 3.3.5.1 Chemical Reduction -- 3.3.5.2 Sol-Gel Methods -- 3.3.5.3 Colloidal Processing -- 3.3.5.4 Powder Processing -- 3.4 Summary -- References -- 4 Interfacial Mechanical Properties of Graphene/Substrate System: Measurement Methods and Experimental Analysis -- 4.1 Methodology of Raman Mechanical Measurements of Graphene.
4.1.1 Theory of Graphene Strain Measurement -- 4.1.2 Characterization of Graphene Strain Using In Situ Raman Spectroscopy -- 4.2 Experimental Investigations of Interfacial Mechanical Behaviors of Graphene -- 4.2.1 Raman-Spectroscopy-Based Investigations of Interfacial Properties of Graphene -- 4.2.2 Influencing Factors of Experimental Measurements on Interfacial Properties -- 4.3 Experimental Investigation of Mechanical Behavior of Graphene/Substrate Interface -- 4.3.1 Graphene/Substrate Specimen and Raman Experiments -- 4.3.2 Interfacial Strain Transfer of the Graphene/Substrate Interface -- 4.3.3 Interfacial Shear Stress of Graphene/Substrate Interface -- 4.4 Size Effect on Mechanical Behavior of Graphene/Substrate Interface -- 4.4.1 Serial Experiments on Graphene/Substrate Interface -- 4.4.2 Size Effect of Graphene/Substrate Interface -- 4.5 Effect of Cyclic Loading on Mechanical Behavior of Graphene/Substrate Interface -- 4.5.1 Initial Strain of Graphene -- 4.5.2 Release of Initial Strain by Cyclic Loading Treatment -- 4.5.3 Improvement of Interfacial Mechanical Properties -- 4.5.4 Discussion -- 4.6 Conclusion -- Acknowledgments -- References -- 5 Graphene-Based Ceramic Composites: Processing and Applications -- 5.1 Introduction -- 5.1.1 Technical Ceramics -- 5.1.2 Graphene -- 5.2 Processing of GCMC -- 5.2.1 Powder Processing -- 5.2.2 Colloidal Processing -- 5.2.3 Sol-Gel Processing -- 5.2.4 Polymer-Derived Ceramics -- 5.2.5 Molecular-Level Mixing -- 5.2.6 Compaction and Consolidation -- 5.3 Properties of GCMC -- 5.3.1 Mechanical Properties and Toughening Mechanisms -- 5.3.2 Electrical Properties -- 5.3.3 Tribological Behavior -- 5.4 Application of GCMC -- 5.4.1 Anode Materials for Li-Ion Batteries -- 5.4.2 Supercapacitors -- 5.4.3 Engine Components/Bearings/Cutting Tools -- 5.5 Conclusion -- References.
6 Ab Initio Design of 2D and 3D Graphene-Based Nanostructure -- 6.1 Introduction -- 6.2 The Subject and the Methods of Simulation -- 6.2.1 1D Modeling -- 6.2.2 2D Modeling -- 6.2.3 3D Modeling -- 6.3 Ab Initio Modeling of the Atomic Structure and Mechanical Properties -- 6.3.1 Atomic Structure and Strength of Carbynes -- 6.3.2 Atomics of Instability and Break of a Contact Bond in 2D Structures -- 6.4 Modeling of 3D Crystal Structures -- 6.5 Thermomechanical Stability -- 6.5.1 Fluctuation Model -- 6.5.2 Lifetime Prediction -- 6.6 Conclusions -- Funding -- References -- 7 Graphene-Based Composite Nanostructures: Synthesis, Properties, and Applications -- 7.1 Introduction -- 7.2 Carbon Nanomaterials -- 7.3 Graphene -- 7.3.1 Graphene Structure -- 7.3.2 Graphene Synthesis -- 7.3.2.1 Exfoliation of Graphite -- 7.3.2.2 CVD Synthesis -- 7.3.2.3 Epitaxial Growth -- 7.3.2.4 Chemical Method -- 7.3.3 Graphene Properties -- 7.3.3.1 Physicochemical Properties -- 7.3.3.2 Thermal and Electrical Properties -- 7.3.3.3 Optical Properties -- 7.3.3.4 Mechanical Properties -- 7.3.3.5 Biological Properties -- 7.4 Carbon-Based Nanocomposites -- 7.4.1 Graphene-Based Composites -- 7.4.2 Graphene-Based Composite Synthesis -- 7.4.2.1 Solution Mixing Method -- 7.4.2.2 Sol-Gel Method -- 7.4.2.3 Hydrothermal/Solvothermal Method -- 7.4.2.4 Self-Assembly -- 7.4.2.5 Other Methods -- 7.4.3 Graphene-Based Composite Properties -- 7.5 Applications -- 7.5.1 Gas Sorption and Storage -- 7.5.2 Hydrogen Storage -- 7.5.3 Energy Storage Devices -- 7.5.4 Antibacterial Activity -- 7.5.5 Bioimaging -- 7.5.6 Biosensing -- 7.5.7 Photocatalysis -- Acknowledgments -- References -- 8 Graphene-Based Composites with Shape Memory Effect-Properties, Applications, and Future Perspectives -- List of Abbreviations -- 8.1 Introduction -- 8.1.1 Graphene -- 8.1.2 Shape Memory Polymers.
8.1.3 Shape Memory Polymer Composites -- 8.2 Graphene-Doped SMP Composites -- 8.2.1 Morphological Properties -- 8.2.2 Optical Properties -- 8.2.3 Mechanical Properties -- 8.2.4 Electrical Properties -- 8.2.5 Shape Memory Characterization -- 8.3 Applications -- 8.4 Future Perspectives -- Acknowledgments -- References -- 9 Graphene-Based Scroll Structures: Optical Characterization and Its Application in Resistive Switching Memory Devices -- 9.1 Graphene-Based Scroll Structures -- 9.1.1 Introduction -- 9.1.2 Reduced Graphene-Oxide-Based Scroll Fabrication: Iron Oxide Intercalation with rGO Powder -- 9.1.3 Reduced Graphene-Oxide-Based Scroll Fabrication: Scrolls Formed due to Phosphor Intercalation -- 9.1.4 Optical Properties of rGO-Phosphor Hybrid Scrolls -- 9.1.5 Raman Spectra of the Scrolls -- 9.2 Reduced Graphene-Oxide-Based Resistive Switching Devices -- 9.2.1 Resistive Switching in GO-Phosphor Hybrid Scrolls -- 9.2.2 Resistive Switching in Graphene-Oxide-Iron Oxide Hybrid Thin Films -- References -- 10 Fabrication and Properties of Copper-Graphene Composites -- 10.1 Introduction -- 10.2 Powder Metallurgy Technique -- 10.2.1 Hot Pressing Technique -- 10.2.2 Microwave Heating -- 10.2.3 Spark Plasma Synthesis -- 10.3 Electrochemical Deposition -- 10.3.1 Deposition in the Direct Current Regime -- 10.3.2 Deposition of Cu-Gr Composites in a Pulse Regime -- 10.3.3 Electrochemical Deposition of Nanotwinned Copper-Graphene Composites -- 10.4 Electroless Deposition -- 10.5 Molecular-Level Mixing (MLM) Technique -- 10.6 Chemical Vapor Deposition (CVD) Technique -- 10.7 Functionalization of Copper Powder Surface -- 10.8 Conclusions -- References -- 11 Graphene-Metal Oxide Composite as Anode Material in Li-Ion Batteries -- 11.1 Introduction -- 11.2 Type of Anode Materials -- 11.3 Metal Oxides as Anode Materials in Lithium Ion Battery.
11.4 Graphene/Graphene-Metal Oxide as Anode in Li-Ion Battery.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Graphene Composites -- 1.1 Introduction -- 1.2 History of Graphene -- 1.3 Synthesis of Graphene -- 1.3.1 Top-Down Approach -- 1.3.1.1 Exfoliation and Cleavage -- 1.3.1.2 Chemically Derived Graphene -- 1.3.2 Bottom-Up Approach -- 1.3.2.1 Chemical Vapor Deposition -- 1.3.2.2 Epitaxial Growth -- 1.3.3 Other Methods -- 1.4 Characterization and Properties -- 1.4.1 Characterization -- 1.4.1.1 Optical Imaging of Graphene Layers -- 1.4.1.2 Atomic Force Microscopy (AFM) -- 1.4.1.3 Transmission Electron Microscopy (TEM) -- 1.4.1.4 Raman Spectroscopy -- 1.4.2 Properties -- 1.4.2.1 Electrical Transport Property -- 1.4.2.2 Optical Properties -- 1.4.2.3 Mechanical Properties -- 1.4.2.4 Thermal Properties -- 1.4.3 Application -- 1.5 Graphene-Based Composites -- 1.5.1 Graphene-Polymer Composites -- 1.5.1.1 Synthesis of Graphene-Reinforced Polymer Composite -- 1.5.1.2 Mechanical Properties -- 1.5.1.3 Electrical Properties -- 1.5.1.4 Thermal Conductivity -- 1.5.1.5 Other Properties -- 1.5.1.6 Application -- 1.5.2 Graphene-Nanoparticle Composites -- 1.5.2.1 Synthesis of Graphene-Nanoparticle Composites -- 1.5.2.2 Properties -- 1.6 Future Prospects -- Acknowledgment -- References -- 2 Graphene-Reinforced Advanced Composite Materials -- 2.1 Introduction -- 2.2 Graphene-Metal Matrix Composites (MMCs) -- 2.2.1 Processing of MMCs -- 2.2.1.1 Powder Metallurgy -- 2.2.1.2 Melting and Solidification -- 2.2.1.3 Electrochemical Deposition -- 2.2.1.4 Thermal Spray -- 2.2.1.5 Other Techniques -- 2.2.2 Properties of the Graphene-Reinforced MMCs -- 2.2.2.1 Mechanical Properties -- 2.2.2.2 Corrosion Properties -- 2.2.2.3 Tribological Properties -- 2.2.2.4 Other Properties -- 2.3 Graphene-Reinforced Polymer Matrix Composites (PMCs) -- 2.3.1 Preparation of Graphene Polymer Composites -- 2.3.1.1 Melt Blending.

2.3.1.2 Solution Compounding -- 2.3.1.3 In Situ Polymerization -- 2.3.1.4 Other Methods -- 2.3.2 Properties of Graphene-Reinforced PMCs -- 2.3.2.1 Electrical Properties -- 2.3.2.2 Mechanical Properties -- 2.3.2.3 Thermal Properties -- 2.3.2.4 Corrosion Properties -- 2.4 Graphene-Reinforced Ceramic Matrix Composites (CMCs) -- 2.4.1 Processing Methods -- 2.4.1.1 Types of Graphene Fillers -- 2.4.1.2 Powder Processing -- 2.4.1.3 Densification -- 2.4.1.4 Thermal/Cold/Plasma Spraying -- 2.4.1.5 Electrophoretic Deposition (EPD) -- 2.4.2 Performance -- 2.4.2.1 Mechanical Properties -- 2.4.2.2 Electrical Properties -- 2.5 Applications of Graphene-Reinforced Composites -- 2.5.1 Low Friction and Wear Components -- 2.5.2 Intelligent Interfaces and Anti-Corrosion Coatings -- 2.5.3 Antibacterial and Biocompatible Implants -- 2.5.4 Flame-Retardant Materials -- 2.6 Conclusion -- References -- 3 Graphene-Based Composite Materials -- 3.1 Introduction -- 3.2 Graphene Composites -- 3.2.1 Graphene Filled Polymer Composites -- 3.2.1.1 Graphene Filled Polymers -- 3.2.1.2 Layered Graphene Polymers -- 3.2.1.3 Polymer-Functionalized Graphene Nanosheets -- 3.2.2 Graphene Nanostructure Composites -- 3.2.3 Hybrid Graphene/Microfiber Composites -- 3.2.4 Graphene Colloids and Coatings -- 3.2.5 Graphene Bioactive Composites -- 3.3 Processing Routes for Graphene Composites -- 3.3.1 Melt Bending/Mixing -- 3.3.2 Solution Blending/Mixing -- 3.3.3 In Situ Polymerization/Crystallization -- 3.3.4 Layer-by-Layer Assembly -- 3.3.5 Other Processing Techniques -- 3.3.5.1 Chemical Reduction -- 3.3.5.2 Sol-Gel Methods -- 3.3.5.3 Colloidal Processing -- 3.3.5.4 Powder Processing -- 3.4 Summary -- References -- 4 Interfacial Mechanical Properties of Graphene/Substrate System: Measurement Methods and Experimental Analysis -- 4.1 Methodology of Raman Mechanical Measurements of Graphene.

4.1.1 Theory of Graphene Strain Measurement -- 4.1.2 Characterization of Graphene Strain Using In Situ Raman Spectroscopy -- 4.2 Experimental Investigations of Interfacial Mechanical Behaviors of Graphene -- 4.2.1 Raman-Spectroscopy-Based Investigations of Interfacial Properties of Graphene -- 4.2.2 Influencing Factors of Experimental Measurements on Interfacial Properties -- 4.3 Experimental Investigation of Mechanical Behavior of Graphene/Substrate Interface -- 4.3.1 Graphene/Substrate Specimen and Raman Experiments -- 4.3.2 Interfacial Strain Transfer of the Graphene/Substrate Interface -- 4.3.3 Interfacial Shear Stress of Graphene/Substrate Interface -- 4.4 Size Effect on Mechanical Behavior of Graphene/Substrate Interface -- 4.4.1 Serial Experiments on Graphene/Substrate Interface -- 4.4.2 Size Effect of Graphene/Substrate Interface -- 4.5 Effect of Cyclic Loading on Mechanical Behavior of Graphene/Substrate Interface -- 4.5.1 Initial Strain of Graphene -- 4.5.2 Release of Initial Strain by Cyclic Loading Treatment -- 4.5.3 Improvement of Interfacial Mechanical Properties -- 4.5.4 Discussion -- 4.6 Conclusion -- Acknowledgments -- References -- 5 Graphene-Based Ceramic Composites: Processing and Applications -- 5.1 Introduction -- 5.1.1 Technical Ceramics -- 5.1.2 Graphene -- 5.2 Processing of GCMC -- 5.2.1 Powder Processing -- 5.2.2 Colloidal Processing -- 5.2.3 Sol-Gel Processing -- 5.2.4 Polymer-Derived Ceramics -- 5.2.5 Molecular-Level Mixing -- 5.2.6 Compaction and Consolidation -- 5.3 Properties of GCMC -- 5.3.1 Mechanical Properties and Toughening Mechanisms -- 5.3.2 Electrical Properties -- 5.3.3 Tribological Behavior -- 5.4 Application of GCMC -- 5.4.1 Anode Materials for Li-Ion Batteries -- 5.4.2 Supercapacitors -- 5.4.3 Engine Components/Bearings/Cutting Tools -- 5.5 Conclusion -- References.

6 Ab Initio Design of 2D and 3D Graphene-Based Nanostructure -- 6.1 Introduction -- 6.2 The Subject and the Methods of Simulation -- 6.2.1 1D Modeling -- 6.2.2 2D Modeling -- 6.2.3 3D Modeling -- 6.3 Ab Initio Modeling of the Atomic Structure and Mechanical Properties -- 6.3.1 Atomic Structure and Strength of Carbynes -- 6.3.2 Atomics of Instability and Break of a Contact Bond in 2D Structures -- 6.4 Modeling of 3D Crystal Structures -- 6.5 Thermomechanical Stability -- 6.5.1 Fluctuation Model -- 6.5.2 Lifetime Prediction -- 6.6 Conclusions -- Funding -- References -- 7 Graphene-Based Composite Nanostructures: Synthesis, Properties, and Applications -- 7.1 Introduction -- 7.2 Carbon Nanomaterials -- 7.3 Graphene -- 7.3.1 Graphene Structure -- 7.3.2 Graphene Synthesis -- 7.3.2.1 Exfoliation of Graphite -- 7.3.2.2 CVD Synthesis -- 7.3.2.3 Epitaxial Growth -- 7.3.2.4 Chemical Method -- 7.3.3 Graphene Properties -- 7.3.3.1 Physicochemical Properties -- 7.3.3.2 Thermal and Electrical Properties -- 7.3.3.3 Optical Properties -- 7.3.3.4 Mechanical Properties -- 7.3.3.5 Biological Properties -- 7.4 Carbon-Based Nanocomposites -- 7.4.1 Graphene-Based Composites -- 7.4.2 Graphene-Based Composite Synthesis -- 7.4.2.1 Solution Mixing Method -- 7.4.2.2 Sol-Gel Method -- 7.4.2.3 Hydrothermal/Solvothermal Method -- 7.4.2.4 Self-Assembly -- 7.4.2.5 Other Methods -- 7.4.3 Graphene-Based Composite Properties -- 7.5 Applications -- 7.5.1 Gas Sorption and Storage -- 7.5.2 Hydrogen Storage -- 7.5.3 Energy Storage Devices -- 7.5.4 Antibacterial Activity -- 7.5.5 Bioimaging -- 7.5.6 Biosensing -- 7.5.7 Photocatalysis -- Acknowledgments -- References -- 8 Graphene-Based Composites with Shape Memory Effect-Properties, Applications, and Future Perspectives -- List of Abbreviations -- 8.1 Introduction -- 8.1.1 Graphene -- 8.1.2 Shape Memory Polymers.

8.1.3 Shape Memory Polymer Composites -- 8.2 Graphene-Doped SMP Composites -- 8.2.1 Morphological Properties -- 8.2.2 Optical Properties -- 8.2.3 Mechanical Properties -- 8.2.4 Electrical Properties -- 8.2.5 Shape Memory Characterization -- 8.3 Applications -- 8.4 Future Perspectives -- Acknowledgments -- References -- 9 Graphene-Based Scroll Structures: Optical Characterization and Its Application in Resistive Switching Memory Devices -- 9.1 Graphene-Based Scroll Structures -- 9.1.1 Introduction -- 9.1.2 Reduced Graphene-Oxide-Based Scroll Fabrication: Iron Oxide Intercalation with rGO Powder -- 9.1.3 Reduced Graphene-Oxide-Based Scroll Fabrication: Scrolls Formed due to Phosphor Intercalation -- 9.1.4 Optical Properties of rGO-Phosphor Hybrid Scrolls -- 9.1.5 Raman Spectra of the Scrolls -- 9.2 Reduced Graphene-Oxide-Based Resistive Switching Devices -- 9.2.1 Resistive Switching in GO-Phosphor Hybrid Scrolls -- 9.2.2 Resistive Switching in Graphene-Oxide-Iron Oxide Hybrid Thin Films -- References -- 10 Fabrication and Properties of Copper-Graphene Composites -- 10.1 Introduction -- 10.2 Powder Metallurgy Technique -- 10.2.1 Hot Pressing Technique -- 10.2.2 Microwave Heating -- 10.2.3 Spark Plasma Synthesis -- 10.3 Electrochemical Deposition -- 10.3.1 Deposition in the Direct Current Regime -- 10.3.2 Deposition of Cu-Gr Composites in a Pulse Regime -- 10.3.3 Electrochemical Deposition of Nanotwinned Copper-Graphene Composites -- 10.4 Electroless Deposition -- 10.5 Molecular-Level Mixing (MLM) Technique -- 10.6 Chemical Vapor Deposition (CVD) Technique -- 10.7 Functionalization of Copper Powder Surface -- 10.8 Conclusions -- References -- 11 Graphene-Metal Oxide Composite as Anode Material in Li-Ion Batteries -- 11.1 Introduction -- 11.2 Type of Anode Materials -- 11.3 Metal Oxides as Anode Materials in Lithium Ion Battery.

11.4 Graphene/Graphene-Metal Oxide as Anode in Li-Ion Battery.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.