Springer Handbook of Ocean Engineering.
Material type:
- text
- computer
- online resource
- 9783319166490
- 620.4162
- TC1665-1670
Intro -- Preface -- About the Editors -- About the Part Editors -- List of Authors -- Contents -- List of Abbreviations -- 1 Introduction -- 1.1 Enabling Maritime Design and Development -- 1.2 History -- 1.3 Basics -- 1.4 Applications -- 1.5 Future Trends -- References -- Part A Fundamentals -- 2 Elements of Physical Oceanography -- 2.1 Atmospheric Processes -- 2.2 Ocean Structure -- 2.3 Oceanic Processes -- 2.4 Surface Gravity Waves -- 2.5 Wind-Forced Ocean Processes -- 2.6 Deep Ocean Currents -- 2.7 Coastal Ocean Currents -- 2.8 Ocean Surface Tides -- 2.9 Oceanic Internal Waves and Tides -- References -- 3 Metocean Extreme and Operating Conditions -- 3.1 Quantifying the Metocean Environment -- 3.2 Overview of WWC Processes -- 3.3 Measurements -- 3.4 Modeling -- 3.5 Joint Events -- 3.6 Operational Criteria -- 3.7 Extreme Criteria -- 3.8 Conclusions -- References -- 4 Mechanics of Ocean Waves -- 4.1 Ocean Surface Waves -- 4.2 Wave Theories -- 4.3 Properties of Small Amplitude Gravity Waves -- 4.4 Weakly Nonlinear Deep Water Wave Theories -- 4.5 Shallow Water Wave Theories -- 4.6 Transformation of Waves Approaching Land -- 4.7 Computational Method for Fully Nonlinear Waves -- 4.8 Wave Forces on Fixed and Floating Structures -- 4.9 Concluding Remarks -- References -- 5 Physical Properties of Seawater -- 5.1 Hydrostatic Pressure -- 5.2 Temperature -- 5.3 Salinity -- 5.4 Density -- 5.5 Temperature-Salinity Relationships -- 5.6 Specific Heat -- 5.7 Freezing of Sea Water and Sea Ice -- 5.8 Coefficient of Thermal Expansion -- 5.9 Sound Velocity -- 5.10 Acoustic Ambient Noise -- 5.11 Light Transmission -- References -- 6 Principles of Marine Corrosion -- 6.1 Chemical and Physical Composition of Seawater -- 6.2 Materials Used in Marine Environments -- 6.3 Marine Corrosion of Steel -- 6.4 Modeling Longer Term Corrosion of Steel.
6.5 Other Influences on Steel Corrosion -- 6.6 Pitting Corrosion of Steel -- 6.7 Some Other Important Materials -- 6.8 Conclusion -- References -- 7 Hydromechanics -- 7.1 Dimensional Analysis, Basic Estimation, and Model Testing -- 7.2 Fluid Statics -- 7.3 Hydrodynamics -- References -- 8 Ocean Electromagnetics -- 8.1 Electromagnetism in an Ocean Environment -- 8.2 Electromagnetic Field Theory -- 8.3 Plane Wave Propagation -- 8.4 Reflection and Transmission of a Plane Wave at the Surface of Fresh Water -- 8.5 Plane Wave Incident on Seawater -- 8.6 Magnetic and Electric Dipoles in an Unbounded Ocean -- 8.7 Magnetic and Electric Dipoles in a Bounded Ocean -- 8.8 Electromagnetic Propagation in the Ocean at Optical Wavelengths -- References -- 9 Digital Signal Processing -- 9.1 Discrete-Time Systems -- 9.2 Digital Filters -- 9.3 The Fast Fourier Transform (FFTfast!Fourier transform) -- 9.4 Waveform Analysis -- 9.5 Optimal Signal Estimation -- 9.6 Concluding Remarks -- References -- 10 Control Theory and Applications -- 10.1 System Theory -- 10.2 Analysis of LTI Systems -- 10.3 SISO System Controls -- 10.4 Pole Placement of LTI Systems -- 10.5 Course-Keeping Autopilots -- References -- Part B Autonomous Ocean Vehicles, Subsystems and Control -- 11 Highly Maneuverable Biorobotic Underwater Vehicles -- 11.1 Biorobotics -- 11.2 Theoretical Foundation of Animal-Inspired Hydrodynamics and Control -- 11.3 Description of Biology-Inspired Vehicles of Emergent Maturity -- 11.4 Reliability, Low Power Consumption,and Disturbance Rejection of Bio-Inspired Propulsion -- 11.5 Demonstrated Maneuverings of NUWC Bio-Inspired Vehicles -- 11.6 Discussion -- 11.7 Concluding Remarks -- 11.8 Nomenclature -- References -- 12 Autonomous Underwater Gliders -- 12.1 Concept -- 12.2 Hydrodynamics of Wings Versus Propellers -- 12.3 Underwater Glider Attributes and Limitations.
12.4 Optimal Size and Shape for Horizontal Transport Efficiency -- 12.5 Thermal Glider -- 12.6 Discussion and Conclusions -- References -- 13 Autonomous Sea Surface Vehicles -- 13.1 Platforms -- 13.2 Autonomous Maneuvering and Navigation -- 13.3 Naval Architecture of AUSV Design -- 13.4 Optimized Class of Autonomous Unmanned Surface Vehicles -- 13.5 Conclusions -- References -- 14 Autonomous Underwater Vehicle Navigation -- 14.1 Sensors -- 14.2 Algorithms -- 14.3 Summary -- 14.4 Conclusion -- References -- 15 Acoustic Communication -- 15.1 A Brief History -- 15.2 Current and Emerging Modem Applications -- 15.3 Existing Technology -- 15.4 Propagation Channel -- 15.5 Point-to-Point Links:Signal Processing -- 15.6 Future Trends -- References -- 16 Autonomous Underwater Vehicle Docking -- 16.1 Technical Elements of Docking -- 16.2 AUV Characteristics -- 16.3 Sensors For Homing -- 16.4 Capture and Connection Mechanisms -- 16.5 Coupling Power and Communications -- 16.6 AUV Control Considerations -- 16.7 Conclusions and Future Prospects -- References -- 17 Underwater Vehicle Manipulators -- 17.1 Underwater Vehicles for Intervention Missions -- 17.2 Dynamics of Underwater Vehicle Manipulators -- 17.3 Teleoperation of Underwater Vehicle Manipulators -- 17.4 Sensor-Based Manipulator Control -- 17.5 Coordinated Motion Controlof Underwater Vehicle-Manipulator Systems -- 17.6 Underwater AutonomousManipulation -- 17.7 Conclusions -- References -- 18 Non-Acoustic Sensors -- 18.1 Non-Acoustic Ocean Sensors: Sourcing and Classification -- 18.2 Classical Non-Acoustic Ocean Sensors -- 18.3 Chemical Sensor Systems -- 18.4 Biological Sensor Systems -- 18.5 Physical Sensor Systems -- 18.6 AUV-Based Physical Sensors -Horizons -- 18.7 AUV-Chemistry Sensors - Horizons -- 18.8 AUV-Based Biological Sensors - Horizons.
18.9 Autonomous Sampling Systems -Extending Real-Time AUV Sensors -- 18.10 Non-Acoustic Sensor Packaging -- 18.11 The Essential Need for Sensors -- References -- 19 Cooperative Vehicle Environmental Monitoring -- 19.1 Motivation -- 19.2 Background and History -- 19.3 Advances in Cooperative Vehicle Ocean Monitoring -- 19.4 Recent Developments and Future Directions -- References -- 20 Nested Autonomy for Distributed Ocean Sensing -- 20.1 Nested Autonomy -- 20.2 Concept of Operations (CONOPS) -- 20.3 Autonomy -- 20.4 Acoustic Communication Infrastructure -- 20.5 On-Board, Real-TimeSignal Processing -- 20.6 Application Examples -- 20.7 Conclusion -- References -- 21 Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles -- 21.1 Time-Optimal Path Planning for Swarms of Ocean Vehicles -- 21.2 Adaptive Sampling for Swarms of Ocean Vehicles -- 21.3 Conclusions and Outlook -- References -- 22 Cooperative Vehicle Target Tracking -- 22.1 General Theoretical Framework -- 22.2 Distributed Sensing, Control, and Decisions -- 22.3 Multistatic Sonar -- 22.4 Maritime Surveillance -- 22.5 Effective Coordination Schemes -- 22.6 Conclusions and Recommendations -- References -- 23 Rules of the Road for Unmanned Marine Vehicles -- 23.1 COLREGS -- 23.2 Sensing the World -- 23.3 Proper Behaviors Yield Compliance -- 23.4 Integrating UMVs into Public Water Space -- 23.5 Developing Standards -- 23.6 The Road Ahead -- 23.7 Conclusion -- References -- 24 Autonomy: Risk Assessment -- 24.1 Risk Management Process for Autonomous Ocean Vehicles -- 24.2 Risk of Failure -- 24.3 Risk of Collision -- 24.4 Risk of Unavailability -- 24.5 Risk of Loss -- 24.6 Legal Risks -- References -- Part C Coastal Design -- 25 Physical Characteristics of Coastal Hazards -- 25.1 Types of Coastal Hazards -- 25.2 Coastal Impacts -- 25.3 Summary.
25.4 Nomenclature -- References -- 26 Statistical Characterization of Hazards and Riskin Coastal Areas -- 26.1 Overview of Risk and Uncertainty -- 26.2 Quantifying Coastal Hazards/Risks -- 26.3 Historical Perspective -- 26.4 Summary -- 26.5 Nomenclature -- 26.A Appendix: Glossary of Probability and Risk Terms -- References -- 27 Modeling of Coastal Waves and Hydrodynamics -- 27.1 Wind Wave Modeling -- 27.2 Modeling Long Waves -- 27.3 Coupled and Nested Techniques -- 27.4 Summary of Model Properties -- 27.5 Conclusions -- 27.6 Nomenclature -- References -- 28 Modeling of Coastal Morphological Processes -- 28.1 Types of Coastal Models -- 28.2 Principles of Process-Based Morphodynamic Modeling -- 28.3 Modeling Approaches -- 28.4 Future Directions -- 28.5 Nomenclature -- References -- 29 Beach Nourishment -- 29.1 Advantages of Beach Nourishment Over Other Approaches -- 29.2 Methods of Delivery of Sand for Beach Nourishment -- 29.3 Role of Structuresin Beach Nourishment -- 29.4 Design and Prediction Approaches and Methods -- 29.5 Additional Design Considerations -- 29.6 Legacy Beach Nourishment Projects -- 29.7 Other Beach Nourishment Projects -- 29.8 Summary and Conclusions -- 29.9 Nomenclature -- References -- 30 Storm Hazard Mitigation Structures -- 30.1 Design Criteria, Philosophy, and Constraints -- 30.2 Coastal Armoring Structures -- 30.3 Shoreline Stabilization Structures -- 30.4 Websites and Sea Level Rise Trends -- References -- 31 Port and Harbor Design -- 31.1 Port and Harbor Layout and Design -- 31.2 Structure Types -- 31.3 Loads on Structures due to Vessel Mooring and Berthing -- 31.4 Suggested Reading -- 31.5 Notation -- References -- 32 Marine Outfalls -- 32.1 Terminology -- 32.2 Governance -- 32.3 Predicting Near-Field Dilutions -- 32.4 Hydraulic Analysis and Design -- 32.5 Outfall Construction -- 32.6 Environmental Monitoring.
References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.