Advanced Materials Interfaces.
Material type:
- text
- computer
- online resource
- 9781119242758
- 530.4/17
- QD381.9.S97 -- .A38 2016eb
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Interfaces Design, Fabrication, and Properties -- 1 Mixed Protein/Polymer Nanostructures at Interfaces -- 1.1 Introduction -- 1.2 Neutral and Charged Macromolecules at Interfaces -- 1.3 Interfacial Experimental Methods -- 1.4 Interactions of Proteins with Polymer-Free Interfaces -- 1.5 Polymers and Proteins in Solution -- 1.6 Proteins at Polymer-Modified Interfaces -- 1.6.1 Steric Effects -- 1.6.2 Polyelectrolyte Multilayers: Electrostatic Nature of Interactions -- 1.6.3 Counterion Release: Charge Anisotropy -- 1.7 Protein-Loaded Interfaces with Potential for Applications -- 1.8 Conclusions -- References -- 2 Exploitation of Self-Assembly Phenomena in Liquid-Crystalline Polymer Phases for Obtaining Multifunctional Materials -- 2.1 Introduction -- 2.2 Amphiphilic Self-Assembled LCPs -- 2.3 Self-Assembled LCPs Through External Stimuli -- 2.4 Supramolecular Self-Assembled LCPs -- 2.5 Self-Assembled LCPs Through Surface Effects -- 2.6 Conclusions and Perspectives -- References -- 3 Scanning Probe Microscopy of Functional Materials Surfaces and Interfaces -- 3.1 Introduction -- 3.2 Scanning Probe Microscopy Approach -- 3.2.1 Piezoresponse Force Microscopy -- 3.2.1.1 Advanced Modes of PFM -- 3.2.1.2 Enhancing Temporal Resolution -- 3.2.2 Conductive-Atomic Force Microscopy -- 3.2.3 Kelvin Probe Force Microscopy -- 3.3 Functional Material Surfaces and Interfaces -- 3.3.1 Ferroelectric Tunnel Junctions -- 3.3.2 Ferroic Domain Walls and Structural-Phase Boundaries -- 3.3.3 Complex-Oxide Thin Films and Heterostructures -- 3.3.4 Photovoltaics -- 3.4 Conclusion and Outlook -- References -- 4 AFM Approaches to the Study of PDMS-Au and Carbon-Based Surfaces and Interfaces -- 4.1 Introduction.
4.2 AFM Characterization of Micro-Nano Surfaces and Interfaces of Carbon-Based Materials and PDMS-Au Nanocomposites -- 4.3 3D Image Processing: ImageJ Tools -- 4.4 Scanning Capacitance Microscopy, Kelvin Probe Microscopy, and Electromagnetic Characterization -- 4.5 AFM Artifacts -- 4.6 Conclusions (General Guidelines for Material Characterization by AFM) -- Acknowledgments -- References -- 5 One-Dimensional Silica Nanostructures and Metal-Silica Nanocomposites: Fabrication, Characterization, and Applications -- 5.1 Introduction: The Weird World of Silica Nanowires and Metal-Silica Composite Nanowires -- 5.2 Silica Nanowires: Fabrication Methodologies, Properties, and Applications -- 5.2.1 Metal-Catalyzed Growth -- 5.2.2 Oxide-Assisted Growth -- 5.3 Metal NPs-Decorated Silica Nanowires: Fabrication Methodologies, Properties, and Applications -- 5.4 Metal NPs Embedded in Silica Nanowires: Fabrication Methodologies, Properties, and Applications -- 5.5 Conclusions: Open Points and Perspectives -- References -- 6 Understanding the Basic Mechanisms Acting on Interfaces: Concrete Elements, Materials and Techniques -- 6.1 Summary -- 6.2 Introduction -- 6.3 Existing Knowledge on Force Transfer Mechanisms on Reinforced Concrete Interfaces -- 6.3.1 Concrete Interfaces -- 6.3.2 Reinforcement Effect on Concrete Interfaces -- 6.3.3 Interfaces of Strengthened RC Structural Elements -- 6.4 International Standards -- 6.4.1 Fib Bulletin 2010 -- 6.4.2 ACI 318-08 -- 6.4.3 Greek Retrofit Code (Gre. Co.) Attuned to EN-1998/part 3 -- 6.5 Conclusions -- References -- 7 Pressure-Sensitive Adhesives (PSA) Based on Silicone -- 7.1 Introduction -- 7.2 Pressure-Sensitive Adhesives -- 7.2.1 Goal of Cross-Linking -- 7.3 Significant Properties of Pressure-Sensitive Adhesives -- 7.3.1 Tack (Initial Adhesion) -- 7.3.2 Peel Adhesion (Adhesion) -- 7.3.3 Shear Strength (Cohesion).
7.3.4 Shrinkage -- 7.4 Silicone PSAs -- 7.4.1 Properties -- 7.4.2 Effect of Cross-LinkingAgent to the Basic Properties Si-PSA -- 7.4.3 Application -- 7.5 Conclusion -- References -- Part 2 Functional Interfaces: Fundamentals and Frontiers -- 8 Interfacing Gelatin with (Hydr)oxides and Metal Nanoparticles: Design of Advanced Hybrid Materials for Biomedical Engineering Applications -- 8.1 Introduction -- 8.2 Physical Gelation of Gelatin -- 8.3 Synthesis of Gelatin-Based Hybrid Nanoparticles and Nanocomposites -- 8.3.1 Preparation of Hybrid Composites by Gelification and Complex Coacervation -- 8.3.2 Processing of Gelatin-Based Hybrid Materials into Monoliths, Films, Foams and Nanofibers -- 8.3.3 Synthesis of Hybrid and Core-Shell Nanoparticles and Nano-Objects -- 8.4 Characterization of Gelatin-Based Hybrid Nanoparticles and Nanocomposites -- 8.5 Mechanical Properties of Gelatin-Based Hybrid Nanoparticles and Nanocomposites -- 8.6 Design of Gelatin-Based Hybrid Nanoparticles for Drug Delivery -- 8.7 Design of Nanostructured Gelatin-Based Hybrid Scaffolds for Tissue Engineering and Regeneration Applications -- 8.8 Conclusions and Outlook -- References -- 9 Implantable Materials for Local Drug Delivery in Bone Regeneration -- 9.1 Bone Morphology -- 9.2 Bone Fracture Healing Process -- 9.3 Current Materials for Bone Regeneration -- 9.3.1 Metals -- 9.3.2 Ceramics -- 9.3.2.1 Biodegradable Ceramics -- 9.3.2.2 Non-Absorbable Ceramics -- 9.3.3 Polymers -- 9.3.3.1 Natural Polymers -- 9.3.3.2 Synthetic Polymers -- 9.3.4 Composites -- 9.4 Therapeutic Molecules with Interest in Bone Regeneration -- 9.4.1 Antibiotics -- 9.4.2 Growth Factors -- 9.4.3 Bisphosphonates -- 9.4.4 Corticosteroids -- 9.4.5 Hormones -- 9.4.6 Antitumoral Drugs -- 9.4.7 Others -- 9.5 Mechanism for Loading Drugs into Implant Materials and Release Kinetics -- 9.5.1 Unspecific Adsorption.
9.5.2 Physical Interactions -- 9.5.3 Physical Entrapment -- 9.5.4 Chemical Immobilization -- 9.6 In Vitro Drug Release Studies -- 9.6.1 Drug Release Kinetic Analysis -- 9.7 Translation to the Human Situation -- 9.8 Conclusions (Future Perspectives) -- Acknowledgments -- References -- 10 Interaction of Cells with Different Micrometer and Submicrometer Topographies -- 10.1 Introduction -- 10.2 Synthesis of Substrates with Controlled Topography -- 10.3 Methods for Creating Micro- and Nanotopographical Features -- 10.4 Litography -- 10.4.1 Photolithography -- 10.4.2 Electron-Beam Lithography -- 10.4.3 Nanoimprint Lithography -- 10.4.4 Soft Lithography -- 10.5 Polymer Demixing -- 10.6 Self-Assembly -- 10.7 Cell Material Interactions -- 10.7.1 Lithography Method -- 10.7.2 Polymer Demixed -- 10.7.3 Cell Behaviour onto EISA obtained films -- 10.7.4 Biological Evidence -- 10.8 Conclusions -- Acknowledgements -- References -- 11 Nanomaterial-Live Cell Interface: Mechanism and Concern -- 11.1 Introduction -- 11.2 Protein Destabilization -- 11.3 Nanomaterials-Induced Oxidative Stress -- 11.3.1 Transitional Metal-Oxide Nanomaterials and ROS -- 11.3.2 Prooxidant Effects of Metal Oxide Nanoparticles -- 11.3.3 CNT-Induced ROS Formation -- 11.3.3.1 CNT-Induced Inflammation and Genotoxicity and ROS -- 11.4 Nucleic Acid Damage -- 11.5 Damage to Membrane Integrity and Energy Transduction -- 11.6 Conclusions -- References -- 12 Bioresponsive Surfaces and Interfaces Fabricated by Innovative Laser Approaches -- 12.1 Introduction -- 12.2 Pulsed Laser Methods Applied for the Grown of Inorganic and Organic Coatings -- 12.3 Combinatorial Laser Approaches: New Tool for the Fabrication of Compositional Libraries of Hybrid Coatings -- 12.4 Thin Bioresponsive Coatings Synthesized by Lasers -- 12.4.1 Bioactive Inorganic Coatings Obtained by PLD.
12.4.2 Bioactive Organic Coatings Obtained by MAPLE -- 12.4.3 Bioactive Inorganic-Organic Coatings Obtained by Pulsed Laser Techniques -- 12.4.4 Combinatorial Thin Coatings Libraries Synthesized by C-MAPLE -- 12.4.4.1 Tailoring Cell Signaling Response by Compositional Gradient Bioactive Coatings -- 12.4.4.2 Coatings for Protein Immobilization and Controlled Release -- 12.5 Conclusion and Perspectives -- Acknowledgments -- References -- 13 Polymeric and Non-Polymeric Platforms for Cell Sheet Detachment -- 13.1 Introduction -- 13.2 The Extracellular Matrix -- 13.3 Platforms for Cell Detachment -- 13.3.1 Electroresponsive Platforms -- 13.3.1.1 Electroactive Self-Assembled Monolayers -- 13.3.1.2 Polyelectrolyte-Modified Surfaces -- 13.3.2 Light-Induced Detachment -- 13.3.2.1 Photosensitive Inorganic-Based Surfaces -- 13.3.2.2 Photosensitive Organic-Based Surfaces -- 13.3.3 pH-Sensitive Surfaces -- 13.4 Degradable Platforms -- 13.4.1 Other Detaching Systems -- 13.4.2 Mechanical Platforms -- 13.4.3 Magnetic Platforms -- 13.4.4 Thermoresponsive Platforms -- 13.4.5 Clinical Translation -- 13.5 Conclusions -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.