ORPP logo
Image from Google Jackets

Climate Change, Water Supply and Sanitation : Risk Assessment, Management, Mitigation and Reduction.

By: Contributor(s): Material type: TextTextPublisher: London : IWA Publishing, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (405 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781780405001
Subject(s): Genre/Form: Additional physical formats: Print version:: Climate Change, Water Supply and SanitationDDC classification:
  • 628
LOC classification:
  • TD353 -- .C556 2015eb
Online resources:
Contents:
Cover -- Copyright -- Contents -- About the Authors -- Chapter 1: Demonstrations -- Chapter 1.1: Demonstration of early warning and distributed disinfection control for water distribution network in Lisbon -- 1.1.1 Introduction -- 1.1.2 Findings -- 1.1.2.1 The Lisbon drinking water distribution system -- 1.1.2.2 Description of work -- 1.1.2.3 PREPARED WP4.4/WP1.2 workshop -- 1.1.2.4 Preliminary monitoring and modelling studies -- 1.1.2.5 Demonstration studies -- 1.1.2.6 PREPARED WP4.4/WP1.2 workshop -- 1.1.3 Conclusions and Recommendations -- 1.1.3.1 Conclusions -- 1.1.3.2 Recomendations -- 1.1.4 References -- Chapter 1.2: Demonstration of water deterioration model in distribution network in Eindhoven, Demonstration Report -- 1.2.1 Introduction -- 1.2.2 Findings -- 1.2.2.1 Model description -- 1.2.2.2 Results -- 1.2.3 Conclusions and Recommendations -- 1.2.4 References -- Chapter 1.3: Demonstration of Integrated real time control of sanitation systems incl. early warning for WQ in receiving waters in Aarhus -- 1.3.1 Introduction -- 1.3.2 Findings -- 1.3.2.1 Real time integrated control -- 1.3.2.2 Warning system -- 1.3.3 Conclusions and Recommendations -- 1.3.4 References -- Chapter 1.4: Demonstration system for early warning of faecal contamination in recreational waters in Lisbon -- 1.4.1 Introduction -- 1.4.2 Findings -- 1.4.2.1 Field surveys -- 1.4.2.2 Urban drainage modelling and forecast -- 1.4.2.3 Estuary modelling and forecast -- 1.4.2.4 On-line monitoring system -- 1.4.2.5 RDFS-PREPARED platform to support early warnings -- 1.4.3 Conclusions and Recommendations -- 1.4.4 References -- Chapter 1.5: Demonstration of enhanced real-time measuring and forecasting technologies for combined sewer system in Gliwice -- 1.5.1 Introduction -- 1.5.2 Findings -- 1.5.2.1 Flow monitoring in the sewer system.
1.5.2.2 Rainfall monitoring and forecasting system -- 1.5.2.3 Combined sewer system model (SWMM) -- 1.5.2.4 Coupling -- 1.5.3 Conclusions and Recommendations -- 1.5.4 References -- Chapter 1.6: Developing adaptive capacity in a water utility -- 1.6.1 Adaptation -- 1.6.2 Adaptation planning process - its development and application -- 1.6.3 References -- Chapter 1.7: Demonstration of DSS for planning complex urban water systems for regions under water stress in Barcelona -- 1.7.1 Introduction -- 1.7.2 Findings -- 1.7.2.1 Scope of the envisaged DSS tool -- 1.7.2.2 Findings obtained through a state-of-the-art review -- 1.7.2.3 Conceptual framework -- 1.7.2.4 Describing DSS for ranking mitigation and adaptation strategies -- 1.7.2.5 DSS demonstration applied to Barcelona water supply system -- 1.7.3 Conclusions and Recommendations -- 1.7.4 References -- Chapter 1.8: Recommendations for the operation and maintenance of surface infiltration systems to be PREPARED. Application to the Llobregat Delta aquifer (Barcelona) -- 1.8.1 Introduction -- 1.8.2 Findings -- 1.8.2.1 Methodology: Multi-evaluation analysis adapted to the site -- 1.8.2.2 Evaluated hydraulic impacts -- 1.8.2.3 Discussion of the quality limits -- 1.8.3 Conclusions and Recommendations -- 1.8.3.1 Sensors and automatisation of the aquifer recharge system -- 1.8.3.2 Operational periods suggested -- 1.8.3.3 Maintenance tasks -- 1.8.3.4 Future research work -- 1.8.4 References -- Chapter 1.9: Demonstration of conceptual scheme for rainwater harvesting and grey water management in Istanbul -- 1.9.1 Introduction -- 1.9.2 Findings -- 1.9.2.1 Grey water treatment and reuse pilot experiments -- 1.9.2.2 Rain water harvesting experiments -- 1.9.2.3 Energy requirements and cost assesment for GW reuse and RWH -- 1.9.3 Conclusions and Recommendations -- 1.9.4 References.
Chapter 1.10: Demonstration of DSS for competing uses of source water and protection of water intakes in Genoa -- 1.10.1 Introduction -- 1.10.1.1 System description -- 1.10.1.2 Challenges -- 1.10.1.3 Objectives -- 1.10.2 Findings -- 1.10.2.1 General overview on the DSS's components -- 1.10.2.2 Demonstrating the DSS: daily shadow management of the system from 2007 to 2012 -- 1.10.2.3 The simulation model as a negotiation tool -- 1.10.3 Conclusions and Recommendations -- 1.10.3.1 Utility's involvement -- 1.10.3.2 Actions to end-users -- 1.10.4 References -- Chapter 1.11: Demonstration of Natural Organic Matter removal to prevent adverse effects of re-growth in networks in Oslo -- 1.11.1 Introduction -- 1.11.2 Findings -- 1.11.3 Conclusions and Recommendations -- 1.11.4 References -- Chapter 1.12: Demonstration of an urban risk management plan in Barcelona -- 1.12.1 Introduction -- 1.12.2 Findings -- 1.12.2.1 Scenarios -- 1.12.2.2 Urban flood modelling -- 1.12.2.3 Risk -- 1.12.2.4 Results -- 1.12.3 Conclusions and Recommendations -- 1.12.4 References -- Chapter 1.13: Demonstration of a planning instrument for integrated and impact based CSO control under climate change conditions in Berlin -- 1.13.1 Introduction -- 1.13.2 Findings -- 1.13.2.1 Model validation -- 1.13.2.2 Scenario analysis -- 1.13.3 Conclusions and Recommendations -- 1.13.4 References -- Chapter 1.14: Demonstration of increasing the capacity of a wastewater treatment plant by process transformations during high flows in Oslo -- 1.14.1 Introduction -- 1.14.2 Findings -- 1.14.2.1 The demonstration site -- 1.14.2.2 The concept of process transformation -- 1.14.2.3 Results from the demonstration periods -- 1.14.3 Conclusions and Recommendations -- 1.14.4 References -- Chapter 1.15: Demonstration of Water Cycle Safety Planning (WCSP) in Eindhoven -- 1.15.1 Introduction.
1.15.1.1 Climate change challenges in Eindhoven -- 1.15.1.2 Water cycle safety planning in Eindhoven -- 1.15.2 Findings -- 1.15.2.1 Characterisation of the water cycle and initial risk inventory -- 1.15.2.2 Risk analysis and risk treatment -- 1.15.2.3 Management and communication -- 1.15.3 Conclusions and reccomendations -- 1.15.4 References -- Chapter 1.16: Demonstration of a Water Cycle Safety Plan in Lisbon -- 1.16.1 Introduction -- 1.16.2 Findings -- 1.16.2.1 Commitment, team and establishment of water cycle safety policy and context -- 1.16.2.2 Risk identification -- 1.16.2.3 Risk analysis -- 1.16.2.4 Risk treatment -- 1.16.3 Conclusions and recommendations -- 1.16.4 References -- Chapter 1.17: Demonstration of a Water Cycle Safety Plan in Oslo -- 1.17.1 Introduction -- 1.17.1.1 Climate change challenges in Oslo -- 1.17.1.2 Water Cycle Safety Planning in Oslo -- 1.17.2 Findings -- 1.17.2.1 Characterisation of the water cycle and initial risk inventory -- 1.17.2.2 Water supply -- 1.17.2.3 Water distribution -- 1.17.2.4 Wastewater collection and transport -- 1.17.3 Conclusions and reccomendations -- Chapter 2: Risk assessment and management -- 2.1 Introduction to Risk Management in the Urban Water Cycle -- 2.2 Water Cycle Safety Planning -- 2.2.1 Introduction to the Water Cycle Safety Planning -- 2.2.2 Risk Assessment and Risk Management in European Directives -- 2.2.3 Water Cycle Safety Planning Concept and Structure -- 2.2.4 Water Cycle Safety Plan Website WCSP.eu -- 2.3 Water Cycle Hazard Database (WCHDB) -- 2.3.1 Introduction to WCSP Risk Identification and Tools -- 2.3.2 Overview of Climate Change Effects which May Impact the Urban Water Cycle -- 2.3.2.1 Trends in climate change and its effects in Europe -- 2.3.2.2 Selected climate change indicators and effects -- 2.3.2.3 Specific climate change effects in urban water cycle systems.
2.3.3 Risk Identification Database Structure and Contents -- 2.3.4 Guidance on Risk Identification using RIDB in the Scope of WCSP -- 2.4 Quantitative Risk Assessment (QRA) -- 2.4.1 Introduction to QRA -- 2.4.2 Role of QRA in Risk Management -- 2.4.3 Deterministic QRA -- 2.4.4 Stochastic QRA -- 2.4.5 Results from the QRA Case Study in Eindhoven -- 2.5 Risk Reduction Options -- 2.5.1 Introduction to WCSP Risk Treatment and Tools -- 2.5.2 Risk Reduction Measures Database Structure and Contents -- 2.5.2.1 Risk reduction database structure -- 2.5.2.2 RRM catalogue -- 2.5.2.3 RRM directory -- 2.5.3 Catalogue and Quantification of Risk Reduction Measures -- 2.5.3.1 The catalogue of risk reduction measures and qualitative attributes -- 2.5.3.2 Preliminary steps for quantification of risk reduction measures -- 2.5.3.3 Methods for risk reduction quantification -- 2.5.3.4 Application of risk reduction quantification in Eindhoven with CBA -- 2.5.4 Guidance on WCSP Risk Treatment Steps -- 2.6 GIS to Manage Climate Change Risks in the Urban Water Cycle -- 2.6.1 GIS Introduction -- 2.6.2 Overview of GIS Software and Applications -- 2.6.3 Examples of GIS Applications in the Cities -- 2.6.4 GIS Toolbox -- 2.7 References -- Chapter 3: Real Time Monitoring and Modelling, Tools, Methodologies and Models -- Chapter 3.1: Introduction -- 3.1.1 Objective -- 3.1.2 Structure -- Chapter 3.2: Off-line and on-line data validation -- 3.2.1 Overview -- 3.2.2 Findings -- 3.2.2.1 Off-line batchwise data validation using EVOHE -- 3.2.2.2 On-line continuous data validation using DIMS.CORE -- 3.2.3 Conclusions and Recommendations -- Chapter 3.3: Rainfall measurement by radar in the Greater Lyon area -- 3.3.1 Overview -- 3.3.2 Findings -- 3.3.2.1 Rainfall mesurements by radar on a building roof at INSA -- 3.3.3 Rainfall Mesurements by Radar on Parilly Water Tower.
3.3.4 Conclusions and Recommendations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Copyright -- Contents -- About the Authors -- Chapter 1: Demonstrations -- Chapter 1.1: Demonstration of early warning and distributed disinfection control for water distribution network in Lisbon -- 1.1.1 Introduction -- 1.1.2 Findings -- 1.1.2.1 The Lisbon drinking water distribution system -- 1.1.2.2 Description of work -- 1.1.2.3 PREPARED WP4.4/WP1.2 workshop -- 1.1.2.4 Preliminary monitoring and modelling studies -- 1.1.2.5 Demonstration studies -- 1.1.2.6 PREPARED WP4.4/WP1.2 workshop -- 1.1.3 Conclusions and Recommendations -- 1.1.3.1 Conclusions -- 1.1.3.2 Recomendations -- 1.1.4 References -- Chapter 1.2: Demonstration of water deterioration model in distribution network in Eindhoven, Demonstration Report -- 1.2.1 Introduction -- 1.2.2 Findings -- 1.2.2.1 Model description -- 1.2.2.2 Results -- 1.2.3 Conclusions and Recommendations -- 1.2.4 References -- Chapter 1.3: Demonstration of Integrated real time control of sanitation systems incl. early warning for WQ in receiving waters in Aarhus -- 1.3.1 Introduction -- 1.3.2 Findings -- 1.3.2.1 Real time integrated control -- 1.3.2.2 Warning system -- 1.3.3 Conclusions and Recommendations -- 1.3.4 References -- Chapter 1.4: Demonstration system for early warning of faecal contamination in recreational waters in Lisbon -- 1.4.1 Introduction -- 1.4.2 Findings -- 1.4.2.1 Field surveys -- 1.4.2.2 Urban drainage modelling and forecast -- 1.4.2.3 Estuary modelling and forecast -- 1.4.2.4 On-line monitoring system -- 1.4.2.5 RDFS-PREPARED platform to support early warnings -- 1.4.3 Conclusions and Recommendations -- 1.4.4 References -- Chapter 1.5: Demonstration of enhanced real-time measuring and forecasting technologies for combined sewer system in Gliwice -- 1.5.1 Introduction -- 1.5.2 Findings -- 1.5.2.1 Flow monitoring in the sewer system.

1.5.2.2 Rainfall monitoring and forecasting system -- 1.5.2.3 Combined sewer system model (SWMM) -- 1.5.2.4 Coupling -- 1.5.3 Conclusions and Recommendations -- 1.5.4 References -- Chapter 1.6: Developing adaptive capacity in a water utility -- 1.6.1 Adaptation -- 1.6.2 Adaptation planning process - its development and application -- 1.6.3 References -- Chapter 1.7: Demonstration of DSS for planning complex urban water systems for regions under water stress in Barcelona -- 1.7.1 Introduction -- 1.7.2 Findings -- 1.7.2.1 Scope of the envisaged DSS tool -- 1.7.2.2 Findings obtained through a state-of-the-art review -- 1.7.2.3 Conceptual framework -- 1.7.2.4 Describing DSS for ranking mitigation and adaptation strategies -- 1.7.2.5 DSS demonstration applied to Barcelona water supply system -- 1.7.3 Conclusions and Recommendations -- 1.7.4 References -- Chapter 1.8: Recommendations for the operation and maintenance of surface infiltration systems to be PREPARED. Application to the Llobregat Delta aquifer (Barcelona) -- 1.8.1 Introduction -- 1.8.2 Findings -- 1.8.2.1 Methodology: Multi-evaluation analysis adapted to the site -- 1.8.2.2 Evaluated hydraulic impacts -- 1.8.2.3 Discussion of the quality limits -- 1.8.3 Conclusions and Recommendations -- 1.8.3.1 Sensors and automatisation of the aquifer recharge system -- 1.8.3.2 Operational periods suggested -- 1.8.3.3 Maintenance tasks -- 1.8.3.4 Future research work -- 1.8.4 References -- Chapter 1.9: Demonstration of conceptual scheme for rainwater harvesting and grey water management in Istanbul -- 1.9.1 Introduction -- 1.9.2 Findings -- 1.9.2.1 Grey water treatment and reuse pilot experiments -- 1.9.2.2 Rain water harvesting experiments -- 1.9.2.3 Energy requirements and cost assesment for GW reuse and RWH -- 1.9.3 Conclusions and Recommendations -- 1.9.4 References.

Chapter 1.10: Demonstration of DSS for competing uses of source water and protection of water intakes in Genoa -- 1.10.1 Introduction -- 1.10.1.1 System description -- 1.10.1.2 Challenges -- 1.10.1.3 Objectives -- 1.10.2 Findings -- 1.10.2.1 General overview on the DSS's components -- 1.10.2.2 Demonstrating the DSS: daily shadow management of the system from 2007 to 2012 -- 1.10.2.3 The simulation model as a negotiation tool -- 1.10.3 Conclusions and Recommendations -- 1.10.3.1 Utility's involvement -- 1.10.3.2 Actions to end-users -- 1.10.4 References -- Chapter 1.11: Demonstration of Natural Organic Matter removal to prevent adverse effects of re-growth in networks in Oslo -- 1.11.1 Introduction -- 1.11.2 Findings -- 1.11.3 Conclusions and Recommendations -- 1.11.4 References -- Chapter 1.12: Demonstration of an urban risk management plan in Barcelona -- 1.12.1 Introduction -- 1.12.2 Findings -- 1.12.2.1 Scenarios -- 1.12.2.2 Urban flood modelling -- 1.12.2.3 Risk -- 1.12.2.4 Results -- 1.12.3 Conclusions and Recommendations -- 1.12.4 References -- Chapter 1.13: Demonstration of a planning instrument for integrated and impact based CSO control under climate change conditions in Berlin -- 1.13.1 Introduction -- 1.13.2 Findings -- 1.13.2.1 Model validation -- 1.13.2.2 Scenario analysis -- 1.13.3 Conclusions and Recommendations -- 1.13.4 References -- Chapter 1.14: Demonstration of increasing the capacity of a wastewater treatment plant by process transformations during high flows in Oslo -- 1.14.1 Introduction -- 1.14.2 Findings -- 1.14.2.1 The demonstration site -- 1.14.2.2 The concept of process transformation -- 1.14.2.3 Results from the demonstration periods -- 1.14.3 Conclusions and Recommendations -- 1.14.4 References -- Chapter 1.15: Demonstration of Water Cycle Safety Planning (WCSP) in Eindhoven -- 1.15.1 Introduction.

1.15.1.1 Climate change challenges in Eindhoven -- 1.15.1.2 Water cycle safety planning in Eindhoven -- 1.15.2 Findings -- 1.15.2.1 Characterisation of the water cycle and initial risk inventory -- 1.15.2.2 Risk analysis and risk treatment -- 1.15.2.3 Management and communication -- 1.15.3 Conclusions and reccomendations -- 1.15.4 References -- Chapter 1.16: Demonstration of a Water Cycle Safety Plan in Lisbon -- 1.16.1 Introduction -- 1.16.2 Findings -- 1.16.2.1 Commitment, team and establishment of water cycle safety policy and context -- 1.16.2.2 Risk identification -- 1.16.2.3 Risk analysis -- 1.16.2.4 Risk treatment -- 1.16.3 Conclusions and recommendations -- 1.16.4 References -- Chapter 1.17: Demonstration of a Water Cycle Safety Plan in Oslo -- 1.17.1 Introduction -- 1.17.1.1 Climate change challenges in Oslo -- 1.17.1.2 Water Cycle Safety Planning in Oslo -- 1.17.2 Findings -- 1.17.2.1 Characterisation of the water cycle and initial risk inventory -- 1.17.2.2 Water supply -- 1.17.2.3 Water distribution -- 1.17.2.4 Wastewater collection and transport -- 1.17.3 Conclusions and reccomendations -- Chapter 2: Risk assessment and management -- 2.1 Introduction to Risk Management in the Urban Water Cycle -- 2.2 Water Cycle Safety Planning -- 2.2.1 Introduction to the Water Cycle Safety Planning -- 2.2.2 Risk Assessment and Risk Management in European Directives -- 2.2.3 Water Cycle Safety Planning Concept and Structure -- 2.2.4 Water Cycle Safety Plan Website WCSP.eu -- 2.3 Water Cycle Hazard Database (WCHDB) -- 2.3.1 Introduction to WCSP Risk Identification and Tools -- 2.3.2 Overview of Climate Change Effects which May Impact the Urban Water Cycle -- 2.3.2.1 Trends in climate change and its effects in Europe -- 2.3.2.2 Selected climate change indicators and effects -- 2.3.2.3 Specific climate change effects in urban water cycle systems.

2.3.3 Risk Identification Database Structure and Contents -- 2.3.4 Guidance on Risk Identification using RIDB in the Scope of WCSP -- 2.4 Quantitative Risk Assessment (QRA) -- 2.4.1 Introduction to QRA -- 2.4.2 Role of QRA in Risk Management -- 2.4.3 Deterministic QRA -- 2.4.4 Stochastic QRA -- 2.4.5 Results from the QRA Case Study in Eindhoven -- 2.5 Risk Reduction Options -- 2.5.1 Introduction to WCSP Risk Treatment and Tools -- 2.5.2 Risk Reduction Measures Database Structure and Contents -- 2.5.2.1 Risk reduction database structure -- 2.5.2.2 RRM catalogue -- 2.5.2.3 RRM directory -- 2.5.3 Catalogue and Quantification of Risk Reduction Measures -- 2.5.3.1 The catalogue of risk reduction measures and qualitative attributes -- 2.5.3.2 Preliminary steps for quantification of risk reduction measures -- 2.5.3.3 Methods for risk reduction quantification -- 2.5.3.4 Application of risk reduction quantification in Eindhoven with CBA -- 2.5.4 Guidance on WCSP Risk Treatment Steps -- 2.6 GIS to Manage Climate Change Risks in the Urban Water Cycle -- 2.6.1 GIS Introduction -- 2.6.2 Overview of GIS Software and Applications -- 2.6.3 Examples of GIS Applications in the Cities -- 2.6.4 GIS Toolbox -- 2.7 References -- Chapter 3: Real Time Monitoring and Modelling, Tools, Methodologies and Models -- Chapter 3.1: Introduction -- 3.1.1 Objective -- 3.1.2 Structure -- Chapter 3.2: Off-line and on-line data validation -- 3.2.1 Overview -- 3.2.2 Findings -- 3.2.2.1 Off-line batchwise data validation using EVOHE -- 3.2.2.2 On-line continuous data validation using DIMS.CORE -- 3.2.3 Conclusions and Recommendations -- Chapter 3.3: Rainfall measurement by radar in the Greater Lyon area -- 3.3.1 Overview -- 3.3.2 Findings -- 3.3.2.1 Rainfall mesurements by radar on a building roof at INSA -- 3.3.3 Rainfall Mesurements by Radar on Parilly Water Tower.

3.3.4 Conclusions and Recommendations.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.