Named Entities for Computational Linguistics.
Material type:
- text
- computer
- online resource
- 9781119268574
- P98 -- .N688 2016eb
Cover -- Title Page -- Copyright -- Contents -- Introduction -- Chapter 1: Named Entities for Accessing Information -- 1.1. Research program history -- 1.1.1. Understanding documents: an ambitious task -- 1.1.2. Detecting basic elements: named entities -- 1.1.3. Trend: a return to slot filling -- 1.2. Task using named entities as a basic representation -- 1.3. Conclusion -- Chapter 2: Named Entities, Referential Units -- 2.1. Issues with the named entity concept -- 2.1.1. A heterogeneous set -- 2.1.1.1. Category multiplicity -- 2.1.1.2. Mention diversity -- 2.1.2. Existing defining formulas -- 2.1.3. An NLP object -- 2.2. The notions of meaning and reference -- 2.2.1. What is the reference? -- 2.2.2. What is meaning? -- 2.3. Proper names -- 2.3.1. The traditional criteria for defining a proper name -- 2.3.2. Meaning and referential function of proper names -- 2.3.3. The "referential load" of proper names -- 2.4. Definite descriptions -- 2.4.1. What is a definite description? -- 2.4.2. The meaning of definite descriptions -- 2.4.3. Complete and incomplete definite descriptions -- 2.5. The meaning and referential functioning of named entities -- 2.5.1. Reference to a particular -- 2.5.1.1. The principle of individuation -- 2.5.1.2. Referential uniqueness -- 2.5.2. Referential autonomy -- 2.5.3. A "natural" heterogeneity -- 2.6. Conclusion -- Chapter 3: Resources Associated with Named Entities -- 3.1. Typologies: general and specialist domains -- 3.1.1. The notion of category -- 3.1.2. Typology development -- 3.1.3. Typologies beyond evaluation campaigns -- 3.1.4. Typologies beyond evaluation campaigns -- 3.1.5. Illustrated comparison -- 3.1.6. Issues to consider regarding entities -- 3.2. Corpora -- 3.2.1. Introduction -- 3.2.2. Corpora and named entities -- 3.2.2.1. MUC and ACE corpora -- 3.2.2.2. Corpora produced by French-language campaigns.
3.2.2.3. Corpus produced by the GermEval campaign -- 3.2.2.4. Corpus produced by the Evalita campaign -- 3.2.2.5. Corpus produced by the Harem campaign -- 3.2.3. Conclusion -- 3.3. Lexicons and knowledge databases -- 3.3.1. Lexical databases -- 3.3.1.1. ANNIE -- 3.3.1.2. WordNet -- 3.3.1.3. Prolex -- 3.3.1.4. Geonames -- 3.3.1.5. JRC-Names -- 3.3.1.6. The biomedical domain -- 3.3.1.7. Conclusion -- 3.3.2. Knowledge databases -- 3.4. Conclusion -- Chapter 4: Recognizing Named Entities -- 4.1. Detection and classification of named entities -- 4.2. Indicators for named entity recognition -- 4.2.1. Describing word morphology -- 4.2.2. Using lexical databases -- 4.2.3. Contextual clues -- 4.2.4. Conclusion -- 4.3. Rule-based techniques -- 4.4. Data-driven and machine-learning systems -- 4.4.1. Majority class models -- 4.4.2. Contextual models (HMM) -- 4.4.3. Multiple feature models (Softmax and MaxEnt) -- 4.4.4. Conditional Random Fields (CRFs) -- 4.5. Unsupervised enrichment of supervised methods -- 4.6. Conclusion -- Chpater 5: Linking Named Entities to References -- 5.1. Knowledge bases -- 5.2. Formalizing polysemy in named entity mentions -- 5.3. Stages in the named entity linking process -- 5.3.1. Detecting mentions of named entities -- 5.3.2. Selecting candidates for each mention -- 5.3.3. Entity disambiguation -- 5.3.4. Entity linking -- 5.4. System performance -- 5.4.1. Practical application: DBpedia Spotlight -- 5.4.2. Future prospects -- Chapter 6: Evaluating Named Entity Recognition -- 6.1. Classic measurements: precision, recall and F-measures -- 6.2. Measures using error counts -- 6.3. Evaluating associated tasks -- 6.3.1. Detecting entities and mentions -- 6.3.2. Entity detection and linking -- 6.4. Evaluating preprocessing technologies -- 6.5. Conclusion -- Conclusion -- Appendices -- Appendix 1: Glossary.
Appendix 2: Named Entities: Research Programs -- Appendix 3: Summary of Available Corpora -- Appendix 4: Annotation Formats -- Appendix 5: Named Entities: Current Definitions -- Bibliography -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.