ORPP logo
Image from Google Jackets

Formalizing Natural Languages : The NooJ Approach.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (350 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119264149
Subject(s): Genre/Form: Additional physical formats: Print version:: Formalizing Natural LanguagesLOC classification:
  • P128.F67 -- .S553 2016eb
Online resources:
Contents:
Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Acknowledgments -- 1. Introduction: the Project -- 1.1. Characterizing a set of infinite size -- 1.2. Computers and linguistics -- 1.3. Levels of formalization -- 1.4. Not applicable -- 1.4.1. Poetry and plays on words -- 1.4.2. Stylistics and rhetoric -- 1.4.3. Anaphora, coreference resolution, and semantic disambiguation -- 1.4.4. Extralinguistic calculations -- 1.5. NLP applications -- 1.5.1. Automatic translation -- 1.5.2. Part-of-speech (POS) tagging -- 1.5.3. Linguistic rather than stochastic analysis -- 1.6. Linguistic formalisms: NooJ -- 1.7. Conclusion and structure of this book -- 1.8. Exercises -- 1.9. Internet links -- PART 1: Linguistic Units -- 2. Formalizing the Alphabet -- 2.1. Bits and bytes -- 2.2. Digitizing information -- 2.3. Representing natural numbers -- 2.3.1. Decimal notation -- 2.3.2. Binary notation -- 2.3.3. Hexadecimal notation -- 2.4. Encoding characters -- 2.4.1. Standardization of encodings -- 2.4.2. Accented Latin letters, diacritical marks, and ligatures -- 2.4.3. Extended ASCII encodings -- 2.4.4. Unicode -- 2.5. Alphabetical order -- 2.6. Classification of characters -- 2.7. Conclusion -- 2.8. Exercises -- 2.9. Internet links -- 3. Defining Vocabulary -- 3.1. Multiple vocabularies and the evolution of vocabulary -- 3.2. Derivation -- 3.2.1. Derivation applies to vocabulary elements -- 3.2.2. Derivations are unpredictable -- 3.2.3. Atomicity of derived words -- 3.3. Atomic linguistic units (ALUs) -- 3.3.1. Classification of ALUs -- 3.4. Multiword units versus analyzable sequences of simple words -- 3.4.1. Semantics -- 3.4.2. Usage -- 3.4.3. Transformational analysis -- 3.5. Conclusion -- 3.6. Exercises -- 3.7. Internet links -- 4. Electronic Dictionaries -- 4.1. Could editorial dictionaries be reused?.
4.2. LADL electronic dictionaries -- 4.2.1. Lexicon-Grammar -- 4.2.2. DELA -- 4.3. Dubois and Dubois-Charlier electronic dictionaries -- 4.3.1. The Dictionnaire électronique des mots -- 4.3.2. Les Verbes Français (LVF) -- 4.4. Specifications for the construction of an electronic dictionary -- 4.4.1. One ALU = one lexical entry -- 4.4.2. Importance of derivation -- 4.4.3. Orthographic variation -- 4.4.4. Inflection of simple words, compound words, and expressions -- 4.4.5. Expressions -- 4.4.6. Integration of syntax and semantics -- 4.5. Conclusion -- 4.6. Exercises -- 4.7. Internet links -- PART 2: Languages, Grammars and Machines -- 5. Languages, Grammars, and Machines -- 5.1. Definitions -- 5.1.1. Letters and alphabets -- 5.1.2. Words and languages -- 5.1.3. ALU, vocabularies, phrases, and languages -- 5.1.4. Empty string -- 5.1.5. Free language -- 5.1.6. Grammars -- 5.1.7. Machines -- 5.2. Generative grammars -- 5.3. Chomsky-Schützenberger hierarchy -- 5.3.1. Linguistic formalisms -- 5.4. The NooJ approach -- 5.4.1. A multifaceted approach -- 5.4.2. Unified notation -- 5.4.3. Cascading architecture -- 5.5. Conclusion -- 5.6. Exercises -- 5.7. Internet links -- 6. Regular Grammars -- 6.1. Regular expressions -- 6.1.1. Some examples of regular expressions -- 6.2. Finite-state graphs -- 6.3. Non-deterministic and deterministic graphs -- 6.4. Minimal deterministic graphs -- 6.5. Kleene's theorem -- 6.6. Regular expressions with outputs and finite-state transducers -- 6.7. Extensions of regular grammars -- 6.7.1. Lexical symbols -- 6.7.2. Syntactic symbols -- 6.7.3. Symbols defined by grammars -- 6.7.4. Special operators -- 6.8. Conclusion -- 6.9. Exercises -- 6.10. Internet links -- 7. Context-Free Grammars -- 7.1. Recursion -- 7.1.1. Right recursion -- 7.1.2. Left recursion -- 7.1.3. Middle recursion -- 7.2. Parse trees -- 7.3. Conclusion.
7.4. Exercises -- 7.5. Internet links -- 8. Context-Sensitive Grammars -- 8.1. The NooJ approach -- 8.1.1. The anbncn language -- 8.1.2. The language a2n -- 8.1.3. Handling reduplications -- 8.1.4. Grammatical agreements -- 8.1.5. Lexical constraints in morphological grammars -- 8.2. NooJ contextual constraints -- 8.3. NooJ variables -- 8.3.1. Variables' scope -- 8.3.2. Computing a variable's value -- 8.3.3. Inheriting a variable's value -- 8.4. Conclusion -- 8.5. Exercises -- 8.6. Internet links -- 9. Unrestricted Grammars -- 9.1. Linguistic adequacy -- 9.2. Conclusion -- 9.3. Exercise -- 9.4. Internet links -- PART 3: Automatic Linguistic Parsing -- 10. Text Annotation Structure -- 10.1. Parsing a text -- 10.2. Annotations -- 10.2.1. Limits of XML/TEI representation -- 10.3. Text annotation structure (TAS) -- 10.4. Exercise -- 10.5. Internet links -- 11. Lexical Analysis -- 11.1. Tokenization -- 11.1.1. Letter recognition -- 11.1.2. Apostrophe/quote -- 11.1.3. Dash/hyphen -- 11.1.4. Dot/period/point ambiguity -- 11.2. Word forms -- 11.2.1. Space and punctuation -- 11.2.2. Numbers -- 11.2.3. Words in upper case -- 11.3. Morphological analyses -- 11.3.1. Inflectional morphology -- 11.3.2. Derivational morphology -- 11.3.3. Lexical morphology -- 11.3.4. Agglutinations -- 11.4. Multiword unit recognition -- 11.5. Recognizing expressions -- 11.5.1. Characteristic constituent -- 11.5.2. Varying the characteristic constituent -- 11.5.3. Varying the light verb -- 11.5.4. Resolving ambiguity -- 11.5.5. Annotating expressions -- 11.6. Conclusion -- 11.7. Exercise -- 12. Syntactic Analysis -- 12.1. Local grammars -- 12.1.1. Named entities -- 12.1.2. Grammatical word sequences -- 12.1.3. Automatically identifying ambiguity -- 12.2. Structural grammars -- 12.2.1. Complex atomic linguistic units -- 12.2.2. Structured annotations -- 12.2.3. Ambiguities.
12.2.4. Syntax trees vs parse trees -- 12.2.5. Dependency grammar and tree -- 12.2.6. Resolving ambiguity transparently -- 12.3. Conclusion -- 12.4. Exercises -- 12.5. Internet links -- 13. Transformational Analysis -- 13.1. Implementing transformations -- 13.2. Theoretical problems -- 13.2.1. Equivalence of transformation sequences -- 13.2.2. Ambiguities in transformed sentences -- 13.2.3. Theoretical sentences -- 13.2.4. The number of transformations to be implemented -- 13.3. Transformational analysis with NooJ -- 13.3.1. Applying a grammar in "generation" mode -- 13.3.2. The transformation's arguments -- 13.4. Question answering -- 13.5. Semantic analysis -- 13.6. Machine translation -- 13.7. Conclusion -- 13.8. Exercises -- 13.9. Internet links -- Conclusion -- Bibliography -- Index -- Other titles from iSTE in Cognitive Science and Knowledge Management -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Acknowledgments -- 1. Introduction: the Project -- 1.1. Characterizing a set of infinite size -- 1.2. Computers and linguistics -- 1.3. Levels of formalization -- 1.4. Not applicable -- 1.4.1. Poetry and plays on words -- 1.4.2. Stylistics and rhetoric -- 1.4.3. Anaphora, coreference resolution, and semantic disambiguation -- 1.4.4. Extralinguistic calculations -- 1.5. NLP applications -- 1.5.1. Automatic translation -- 1.5.2. Part-of-speech (POS) tagging -- 1.5.3. Linguistic rather than stochastic analysis -- 1.6. Linguistic formalisms: NooJ -- 1.7. Conclusion and structure of this book -- 1.8. Exercises -- 1.9. Internet links -- PART 1: Linguistic Units -- 2. Formalizing the Alphabet -- 2.1. Bits and bytes -- 2.2. Digitizing information -- 2.3. Representing natural numbers -- 2.3.1. Decimal notation -- 2.3.2. Binary notation -- 2.3.3. Hexadecimal notation -- 2.4. Encoding characters -- 2.4.1. Standardization of encodings -- 2.4.2. Accented Latin letters, diacritical marks, and ligatures -- 2.4.3. Extended ASCII encodings -- 2.4.4. Unicode -- 2.5. Alphabetical order -- 2.6. Classification of characters -- 2.7. Conclusion -- 2.8. Exercises -- 2.9. Internet links -- 3. Defining Vocabulary -- 3.1. Multiple vocabularies and the evolution of vocabulary -- 3.2. Derivation -- 3.2.1. Derivation applies to vocabulary elements -- 3.2.2. Derivations are unpredictable -- 3.2.3. Atomicity of derived words -- 3.3. Atomic linguistic units (ALUs) -- 3.3.1. Classification of ALUs -- 3.4. Multiword units versus analyzable sequences of simple words -- 3.4.1. Semantics -- 3.4.2. Usage -- 3.4.3. Transformational analysis -- 3.5. Conclusion -- 3.6. Exercises -- 3.7. Internet links -- 4. Electronic Dictionaries -- 4.1. Could editorial dictionaries be reused?.

4.2. LADL electronic dictionaries -- 4.2.1. Lexicon-Grammar -- 4.2.2. DELA -- 4.3. Dubois and Dubois-Charlier electronic dictionaries -- 4.3.1. The Dictionnaire électronique des mots -- 4.3.2. Les Verbes Français (LVF) -- 4.4. Specifications for the construction of an electronic dictionary -- 4.4.1. One ALU = one lexical entry -- 4.4.2. Importance of derivation -- 4.4.3. Orthographic variation -- 4.4.4. Inflection of simple words, compound words, and expressions -- 4.4.5. Expressions -- 4.4.6. Integration of syntax and semantics -- 4.5. Conclusion -- 4.6. Exercises -- 4.7. Internet links -- PART 2: Languages, Grammars and Machines -- 5. Languages, Grammars, and Machines -- 5.1. Definitions -- 5.1.1. Letters and alphabets -- 5.1.2. Words and languages -- 5.1.3. ALU, vocabularies, phrases, and languages -- 5.1.4. Empty string -- 5.1.5. Free language -- 5.1.6. Grammars -- 5.1.7. Machines -- 5.2. Generative grammars -- 5.3. Chomsky-Schützenberger hierarchy -- 5.3.1. Linguistic formalisms -- 5.4. The NooJ approach -- 5.4.1. A multifaceted approach -- 5.4.2. Unified notation -- 5.4.3. Cascading architecture -- 5.5. Conclusion -- 5.6. Exercises -- 5.7. Internet links -- 6. Regular Grammars -- 6.1. Regular expressions -- 6.1.1. Some examples of regular expressions -- 6.2. Finite-state graphs -- 6.3. Non-deterministic and deterministic graphs -- 6.4. Minimal deterministic graphs -- 6.5. Kleene's theorem -- 6.6. Regular expressions with outputs and finite-state transducers -- 6.7. Extensions of regular grammars -- 6.7.1. Lexical symbols -- 6.7.2. Syntactic symbols -- 6.7.3. Symbols defined by grammars -- 6.7.4. Special operators -- 6.8. Conclusion -- 6.9. Exercises -- 6.10. Internet links -- 7. Context-Free Grammars -- 7.1. Recursion -- 7.1.1. Right recursion -- 7.1.2. Left recursion -- 7.1.3. Middle recursion -- 7.2. Parse trees -- 7.3. Conclusion.

7.4. Exercises -- 7.5. Internet links -- 8. Context-Sensitive Grammars -- 8.1. The NooJ approach -- 8.1.1. The anbncn language -- 8.1.2. The language a2n -- 8.1.3. Handling reduplications -- 8.1.4. Grammatical agreements -- 8.1.5. Lexical constraints in morphological grammars -- 8.2. NooJ contextual constraints -- 8.3. NooJ variables -- 8.3.1. Variables' scope -- 8.3.2. Computing a variable's value -- 8.3.3. Inheriting a variable's value -- 8.4. Conclusion -- 8.5. Exercises -- 8.6. Internet links -- 9. Unrestricted Grammars -- 9.1. Linguistic adequacy -- 9.2. Conclusion -- 9.3. Exercise -- 9.4. Internet links -- PART 3: Automatic Linguistic Parsing -- 10. Text Annotation Structure -- 10.1. Parsing a text -- 10.2. Annotations -- 10.2.1. Limits of XML/TEI representation -- 10.3. Text annotation structure (TAS) -- 10.4. Exercise -- 10.5. Internet links -- 11. Lexical Analysis -- 11.1. Tokenization -- 11.1.1. Letter recognition -- 11.1.2. Apostrophe/quote -- 11.1.3. Dash/hyphen -- 11.1.4. Dot/period/point ambiguity -- 11.2. Word forms -- 11.2.1. Space and punctuation -- 11.2.2. Numbers -- 11.2.3. Words in upper case -- 11.3. Morphological analyses -- 11.3.1. Inflectional morphology -- 11.3.2. Derivational morphology -- 11.3.3. Lexical morphology -- 11.3.4. Agglutinations -- 11.4. Multiword unit recognition -- 11.5. Recognizing expressions -- 11.5.1. Characteristic constituent -- 11.5.2. Varying the characteristic constituent -- 11.5.3. Varying the light verb -- 11.5.4. Resolving ambiguity -- 11.5.5. Annotating expressions -- 11.6. Conclusion -- 11.7. Exercise -- 12. Syntactic Analysis -- 12.1. Local grammars -- 12.1.1. Named entities -- 12.1.2. Grammatical word sequences -- 12.1.3. Automatically identifying ambiguity -- 12.2. Structural grammars -- 12.2.1. Complex atomic linguistic units -- 12.2.2. Structured annotations -- 12.2.3. Ambiguities.

12.2.4. Syntax trees vs parse trees -- 12.2.5. Dependency grammar and tree -- 12.2.6. Resolving ambiguity transparently -- 12.3. Conclusion -- 12.4. Exercises -- 12.5. Internet links -- 13. Transformational Analysis -- 13.1. Implementing transformations -- 13.2. Theoretical problems -- 13.2.1. Equivalence of transformation sequences -- 13.2.2. Ambiguities in transformed sentences -- 13.2.3. Theoretical sentences -- 13.2.4. The number of transformations to be implemented -- 13.3. Transformational analysis with NooJ -- 13.3.1. Applying a grammar in "generation" mode -- 13.3.2. The transformation's arguments -- 13.4. Question answering -- 13.5. Semantic analysis -- 13.6. Machine translation -- 13.7. Conclusion -- 13.8. Exercises -- 13.9. Internet links -- Conclusion -- Bibliography -- Index -- Other titles from iSTE in Cognitive Science and Knowledge Management -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.