ORPP logo
Image from Google Jackets

Molecular Neuroendocrinology : From Genome to Physiology.

By: Contributor(s): Material type: TextTextSeries: Wiley-INF Masterclass in Neuroendocrinology SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (693 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118760338
Subject(s): Genre/Form: Additional physical formats: Print version:: Molecular NeuroendocrinologyDDC classification:
  • 612.8
LOC classification:
  • QP356.4 -- .M65 2016eb
Online resources:
Contents:
Intro -- Title Page -- Table of Contents -- List of Contributors -- Series Preface -- About the Companion Website -- Introduction -- Part A: Genome and Genome Expression -- CHAPTER 1: Evolutionary Aspects of Physiological Function and Molecular Diversity of the Oxytocin/Vasopressin Signaling System -- 1.1 Evolution of peptidergic signaling -- 1.2 The discovery of neuropeptide signaling components in the era of genomics -- 1.3 Evolutionary aspects of OXT/AVP diversity -- 1.4 Physiology of OXT and AVP signaling: from worm to man -- 1.5 Perspectives -- Acknowledgments -- References -- CHAPTER 2: The Neuroendocrine Genome: -- 2.1 The discovery of neuropeptides -- 2.2 Characteristics of neuropeptides -- 2.3 Neuropeptide genes in the genome -- 2.4 Perspectives -- Acknowledgments -- References -- Further reading -- CHAPTER 3: Transcriptome Dynamics -- 3.1 Approaching transcriptome dynamics -- 3.2 Transcriptome dynamics in neuroendocrine systems -- 3.3 Transcriptome dynamics in the pineal gland: lessons from different approaches -- 3.4 SN-NICHD transcriptome profiling web page -- 3.5 Perspectives -- References -- CHAPTER 4: New Players in the Neuroendocrine System: -- 4.1 Non-coding RNA contribution to gene regulation -- 4.2 Central role of the hypothalamus as a neuroendocrine organ -- 4.3 The pituitary gland and its central control of the peripheral endocrine system -- 4.4 The pineal gland - a connector between external environment and internal homeostasis -- 4.5 Perspectives -- References -- CHAPTER 5: Transcription Factors Regulating Neuroendocrine Development, Function, and Oncogenesis -- 5.1 The key players in transcriptional regulation -- 5.2 Classes of neuroendocrine-associated TFs -- 5.3 REST: a zinc finger TF with complex regulation and diverse function -- 5.4 Cooperation of TFs in neuroendocrine phenotype and function -- 5.5 Perspectives.
References -- CHAPTER 6: Epigenetics -- 6.1 Introduction -- 6.2 Early life adversity shapes the HPA axis -- 6.3 Epigenetic mechanisms: changes in the regulation of gene activity and expression that are not dependent on gene sequence -- 6.4 Methods of epigenetic analysis -- 6.5 Alterations in epigenetic processes -- 6.6 The epigenome and early life adversity -- 6.7 Perspectives -- References -- Further reading -- Part B: Proteins, Posttranslational Mechanisms, and Receptors -- CHAPTER 7: Proteome and Peptidome Dynamics -- 7.1 Introduction -- 7.2 Classic neuropeptides and proteins in the RSP -- 7.3 Techniques used to study the rate of peptide biosynthesis -- 7.4 Dynamics of intracellular proteins and peptides -- 7.5 Perspectives -- References -- CHAPTER 8: Neuropeptidomics -- 8.1 Neuropeptides - one gene, multiple products -- 8.2 Mining the neuropeptidome 21st-century style using mass spectrometry-based 'omics approaches -- 8.3 What do all these peptides do? Follow-up functional studies -- 8.4 Perspectives -- Acknowledgments -- References -- Further reading -- CHAPTER 9: Posttranslational Processing of Secretory Proteins -- 9.1 Posttranslational modifications of secretory proteins -- 9.2 The family of proprotein convertases -- 9.3 The neural and endocrine functions of the proprotein convertases -- 9.4 Perspectives -- References -- CHAPTER 10: Neuropeptide Receptors -- 10.1 Neuropeptides as signaling molecules -- 10.2 Most neuropeptide receptors are G protein coupled -- 10.3 Neuropeptide receptor expression in the brain -- 10.4 Functional diversity of neuropeptide receptors -- 10.5 Perspectives -- Acknowledgments -- References -- Part C: The Tool Kit -- CHAPTER 11: Germline Transgenesis -- 11.1 Introduction -- 11.2 A transgene tool kit primer -- 11.3 Programmable nucleases: ZFN, TALEN, CRISPR/cas9 nuclease.
11.4 Controlling transgenes with multicomponent systems -- 11.5 Validity of species and strain choices -- 11.6 Conclusion: perspectives and opportunities provided by the new toolbox -- References -- Further reading -- CHAPTER 12: Somatic Transgenesis (Viral Vectors) -- 12.1 Introduction -- 12.2 Overview of viral vectors -- 12.3 Cell type-specific targeting of neuroendocrine neurons -- 12.4 Application of viral vectors -- 12.5 Perspectives -- Acknowledgments -- References -- CHAPTER 13: Optogenetics Enables Selective Control of Cellular Electrical Activity -- 13.1 Introduction: what is optogenetics? -- 13.2 Optogenetic actuators allow selective control of cellular activity -- 13.3 Using optogenetic actuators to study the function of neurons and circuits -- 13.4 Methods for delivery of optogenetic actuators -- 13.5 Light delivery strategies for optical control -- 13.6 Study of the neuroendocrine system via optogenetics -- 13.7 Future prospects for optogenetics -- Acknowledgments -- References -- CHAPTER 14: Non-Mammalian Models for Neurohypophysial Peptides -- 14.1 Historical overview -- 14.2 Evolutionary perspective on oxytocin and vasopressin peptides sequence and structure -- 14.3 Anatomy of neurohypophysial neurons in non-mammalian species -- 14.4 Function -- 14.5 Modes of communication -- 14.6 Perspectives -- Acknowledgments -- References -- Part D: Case Studies - Integration and Translation -- CHAPTER 15: Osmoregulation -- 15.1 Body fluid homeostasis -- 15.2 Osmosensory mechanisms -- 15.3 Function-related plasticity in the HNS -- 15.4 Perspectives -- Acknowledgments -- References -- CHAPTER 16: Food Intake, Circuitry, and Energy Metabolism -- 16.1 Obesity is a problem … who can we blame? -- 16.2 Genetics as a tool -- 16.3 Body weight is homeostatically controlled -- 16.4 The brain (north of the neck) -- 16.5 Neuronal development and plasticity.
16.6 Hedonic control of food intake -- 16.7 The natural response -- References -- CHAPTER 17: Stress Adaptation and the Hypothalamic-Pituitary-Adrenal Axis -- 17.1 Stress and stress response -- 17.2 Molecular mechanisms of glucocorticoid action -- 17.3 Regulation of HPA axis activity during stress -- 17.4 Pituitary targets in HPA axis regulation -- 17.5 Cytokines and HPA axis responses to stress -- 17.6 Perspectives -- References -- CHAPTER 18: Neuroendocrine Control of Female Puberty -- 18.1 Introduction -- 18.2 The hormonal changes of puberty -- 18.3 The glial contribution -- 18.4 Gene networks controlling puberty -- 18.5 Transcriptional repression: a key regulatory mechanism of prepubertal development -- 18.6 Epigenetic information: an integrating mechanism of reproductive neuroendocrine development -- 18.7 Perspectives -- Acknowledgments -- References -- CHAPTER 19: Oxytocin, Vasopressin, and Diversity in Social Behavior -- 19.1 Introduction -- 19.2 Oxytocin, vasopressin, and social behavior -- 19.3 Oxytocin and vasopressin in the vertebrate brain -- 19.4 OXT and AVP receptors -- 19.5 Neuropeptide receptor expression contributes to individual differences in behavior -- 19.6 How diversity in receptor expression is achieved -- 19.7 Translational implications for OXTR and AVRP1A -- 19.8 Perspectives -- References -- Glossary -- Index -- End User License Agreement.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Table of Contents -- List of Contributors -- Series Preface -- About the Companion Website -- Introduction -- Part A: Genome and Genome Expression -- CHAPTER 1: Evolutionary Aspects of Physiological Function and Molecular Diversity of the Oxytocin/Vasopressin Signaling System -- 1.1 Evolution of peptidergic signaling -- 1.2 The discovery of neuropeptide signaling components in the era of genomics -- 1.3 Evolutionary aspects of OXT/AVP diversity -- 1.4 Physiology of OXT and AVP signaling: from worm to man -- 1.5 Perspectives -- Acknowledgments -- References -- CHAPTER 2: The Neuroendocrine Genome: -- 2.1 The discovery of neuropeptides -- 2.2 Characteristics of neuropeptides -- 2.3 Neuropeptide genes in the genome -- 2.4 Perspectives -- Acknowledgments -- References -- Further reading -- CHAPTER 3: Transcriptome Dynamics -- 3.1 Approaching transcriptome dynamics -- 3.2 Transcriptome dynamics in neuroendocrine systems -- 3.3 Transcriptome dynamics in the pineal gland: lessons from different approaches -- 3.4 SN-NICHD transcriptome profiling web page -- 3.5 Perspectives -- References -- CHAPTER 4: New Players in the Neuroendocrine System: -- 4.1 Non-coding RNA contribution to gene regulation -- 4.2 Central role of the hypothalamus as a neuroendocrine organ -- 4.3 The pituitary gland and its central control of the peripheral endocrine system -- 4.4 The pineal gland - a connector between external environment and internal homeostasis -- 4.5 Perspectives -- References -- CHAPTER 5: Transcription Factors Regulating Neuroendocrine Development, Function, and Oncogenesis -- 5.1 The key players in transcriptional regulation -- 5.2 Classes of neuroendocrine-associated TFs -- 5.3 REST: a zinc finger TF with complex regulation and diverse function -- 5.4 Cooperation of TFs in neuroendocrine phenotype and function -- 5.5 Perspectives.

References -- CHAPTER 6: Epigenetics -- 6.1 Introduction -- 6.2 Early life adversity shapes the HPA axis -- 6.3 Epigenetic mechanisms: changes in the regulation of gene activity and expression that are not dependent on gene sequence -- 6.4 Methods of epigenetic analysis -- 6.5 Alterations in epigenetic processes -- 6.6 The epigenome and early life adversity -- 6.7 Perspectives -- References -- Further reading -- Part B: Proteins, Posttranslational Mechanisms, and Receptors -- CHAPTER 7: Proteome and Peptidome Dynamics -- 7.1 Introduction -- 7.2 Classic neuropeptides and proteins in the RSP -- 7.3 Techniques used to study the rate of peptide biosynthesis -- 7.4 Dynamics of intracellular proteins and peptides -- 7.5 Perspectives -- References -- CHAPTER 8: Neuropeptidomics -- 8.1 Neuropeptides - one gene, multiple products -- 8.2 Mining the neuropeptidome 21st-century style using mass spectrometry-based 'omics approaches -- 8.3 What do all these peptides do? Follow-up functional studies -- 8.4 Perspectives -- Acknowledgments -- References -- Further reading -- CHAPTER 9: Posttranslational Processing of Secretory Proteins -- 9.1 Posttranslational modifications of secretory proteins -- 9.2 The family of proprotein convertases -- 9.3 The neural and endocrine functions of the proprotein convertases -- 9.4 Perspectives -- References -- CHAPTER 10: Neuropeptide Receptors -- 10.1 Neuropeptides as signaling molecules -- 10.2 Most neuropeptide receptors are G protein coupled -- 10.3 Neuropeptide receptor expression in the brain -- 10.4 Functional diversity of neuropeptide receptors -- 10.5 Perspectives -- Acknowledgments -- References -- Part C: The Tool Kit -- CHAPTER 11: Germline Transgenesis -- 11.1 Introduction -- 11.2 A transgene tool kit primer -- 11.3 Programmable nucleases: ZFN, TALEN, CRISPR/cas9 nuclease.

11.4 Controlling transgenes with multicomponent systems -- 11.5 Validity of species and strain choices -- 11.6 Conclusion: perspectives and opportunities provided by the new toolbox -- References -- Further reading -- CHAPTER 12: Somatic Transgenesis (Viral Vectors) -- 12.1 Introduction -- 12.2 Overview of viral vectors -- 12.3 Cell type-specific targeting of neuroendocrine neurons -- 12.4 Application of viral vectors -- 12.5 Perspectives -- Acknowledgments -- References -- CHAPTER 13: Optogenetics Enables Selective Control of Cellular Electrical Activity -- 13.1 Introduction: what is optogenetics? -- 13.2 Optogenetic actuators allow selective control of cellular activity -- 13.3 Using optogenetic actuators to study the function of neurons and circuits -- 13.4 Methods for delivery of optogenetic actuators -- 13.5 Light delivery strategies for optical control -- 13.6 Study of the neuroendocrine system via optogenetics -- 13.7 Future prospects for optogenetics -- Acknowledgments -- References -- CHAPTER 14: Non-Mammalian Models for Neurohypophysial Peptides -- 14.1 Historical overview -- 14.2 Evolutionary perspective on oxytocin and vasopressin peptides sequence and structure -- 14.3 Anatomy of neurohypophysial neurons in non-mammalian species -- 14.4 Function -- 14.5 Modes of communication -- 14.6 Perspectives -- Acknowledgments -- References -- Part D: Case Studies - Integration and Translation -- CHAPTER 15: Osmoregulation -- 15.1 Body fluid homeostasis -- 15.2 Osmosensory mechanisms -- 15.3 Function-related plasticity in the HNS -- 15.4 Perspectives -- Acknowledgments -- References -- CHAPTER 16: Food Intake, Circuitry, and Energy Metabolism -- 16.1 Obesity is a problem … who can we blame? -- 16.2 Genetics as a tool -- 16.3 Body weight is homeostatically controlled -- 16.4 The brain (north of the neck) -- 16.5 Neuronal development and plasticity.

16.6 Hedonic control of food intake -- 16.7 The natural response -- References -- CHAPTER 17: Stress Adaptation and the Hypothalamic-Pituitary-Adrenal Axis -- 17.1 Stress and stress response -- 17.2 Molecular mechanisms of glucocorticoid action -- 17.3 Regulation of HPA axis activity during stress -- 17.4 Pituitary targets in HPA axis regulation -- 17.5 Cytokines and HPA axis responses to stress -- 17.6 Perspectives -- References -- CHAPTER 18: Neuroendocrine Control of Female Puberty -- 18.1 Introduction -- 18.2 The hormonal changes of puberty -- 18.3 The glial contribution -- 18.4 Gene networks controlling puberty -- 18.5 Transcriptional repression: a key regulatory mechanism of prepubertal development -- 18.6 Epigenetic information: an integrating mechanism of reproductive neuroendocrine development -- 18.7 Perspectives -- Acknowledgments -- References -- CHAPTER 19: Oxytocin, Vasopressin, and Diversity in Social Behavior -- 19.1 Introduction -- 19.2 Oxytocin, vasopressin, and social behavior -- 19.3 Oxytocin and vasopressin in the vertebrate brain -- 19.4 OXT and AVP receptors -- 19.5 Neuropeptide receptor expression contributes to individual differences in behavior -- 19.6 How diversity in receptor expression is achieved -- 19.7 Translational implications for OXTR and AVRP1A -- 19.8 Perspectives -- References -- Glossary -- Index -- End User License Agreement.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.