Undersea Fiber Communication Systems.
Material type:
- text
- computer
- online resource
- 9780128043950
- 621.382/75
- TK5103.592.F52
Front Cover -- Undersea Fiber Communication Systems -- Copyright Page -- Contents -- Biographies -- Foreword by Yves Ruggeri -- Foreword by Valey Kamalov -- Foreword by Neal S. Bergano -- Preface -- Submarine cables: a strategic domain -- Why a second edition? -- Objectives and outline of the book -- References -- I. Introduction -- 1 Presentation of submarine fiber communication -- 1.1 Preamble -- 1.2 Configuration of a submarine communication system -- 1.3 Multi-terabit submarine optical technology -- 1.4 Recent and future evolution -- 1.4.1 Recent evolution of submarine cables -- 1.4.2 Future evolution of submarine networks -- References -- 2 Historical overview of submarine communication systems -- 2.1 Introduction -- 2.2 The era of telegraph on submarine cables -- 2.2.1 The early age of electric telegraph (1800-1850) -- 2.2.1.1 Morse's invention conquers the world -- 2.2.1.2 Terrestrial long haul lines -- 2.2.2 The British era of submarine cable (1850-1872) -- 2.2.2.1 Unsuccessful attempts (1850-1860) -- 2.2.2.2 The blue book of the board of trade commission -- 2.2.2.3 The British network (1863-1872) -- 2.2.3 The global network (1872-1920) -- 2.2.4 Cable and radio competition (1920-1960) -- 2.2.5 Technical and economic aspects -- 2.2.5.1 Submarine cable business overview (industries and operating companies) -- 2.2.5.2 Transmission improvements -- 2.2.5.3 Cableships and offshore work -- 2.3 The era of telephone on coaxial submarine cables -- 2.3.1 Earliest telephonic submarine cable trials -- 2.3.2 First generation of coaxial submarine cable (1950-1961) -- 2.3.3 Second generation of coaxial submarine cable (1960-1970) -- 2.3.4 Wideband submarine cables (1970-1988) -- 2.3.5 Technical and economic aspects -- 2.3.5.1 Submarine cables and telecommunications satellites -- 2.3.5.2 Network maintenance and cable protection.
2.3.5.3 Cable ships and offshore works -- 2.4 The era of fiber optic submarine cables -- 2.4.1 From analog to digital (1976-1988) -- 2.4.2 Regenerated fiber optic submarine cable systems and consortium organizations (1986-1995) -- 2.4.3 Optical amplification and WDM technology (1995-2000) -- 2.4.4 The era of coherent technology and upgrades (2010-) -- 2.4.5 New markets and impact on the economy -- 2.4.6 Cableships and offshore works -- 2.5 Conclusion -- References -- II. Submarine System Design -- 3 Basics of incoherent and coherent digital optical communications -- 3.1 Introduction -- 3.2 Optical channel -- 3.2.1 Optical bandwidth -- 3.2.2 Optical channel capacity -- 3.2.2.1 Information and entropy -- 3.2.2.2 Communication challenge -- 3.2.2.3 Waveform communication channel capacity -- 3.2.2.4 Waveform optical channel capacity -- 3.2.3 Binary optical channel and the symbol probabilities -- 3.3 Modulation formats -- 3.3.1 Parameters to be modulated -- 3.3.2 Optical power spectrum of modulated signals -- 3.3.3 General expression for baseband power spectrum of modulated signals -- 3.3.4 On-off keying modulation formats -- 3.3.4.1 NRZ modulated signal -- 3.3.4.2 RZ modulated signal -- 3.3.4.3 Intensity modulation implementation impairments -- 3.3.5 Pure phase modulations -- 3.3.5.1 2-QAM binary phase-shift keying -- 3.3.5.2 4-QAM quadrature phase-shift keying -- 3.3.5.3 Line width and phase diffusion limitation -- 3.3.6 Quadrature amplitude modulation -- 3.4 Noise and signal and noise interplays -- 3.4.1 Optical signal-to-noise ratio and noise factor -- 3.4.2 Photodetector sensitivity and optical-to-electrical signal conversion -- 3.4.3 Fundamental quantum noise -- 3.4.3.1 Shot noise -- 3.4.3.2 Signal against optical noise beating -- 3.4.3.3 Interpretation of shot noise as a beat noise.
3.4.3.4 Quantum noise as reference noise level for the optical intensity noise -- 3.4.3.5 Quantum noise as reference noise level for the optical field noise -- 3.4.4 Optical amplification noise -- 3.4.4.1 Noise addition necessity in optical amplification -- 3.4.4.2 Optical amplifier minimum noise addition -- 3.4.4.3 Amplifier excess of noise -- 3.4.4.4 Example of the laser amplifier -- 3.4.5 Influence of gain and loss distribution -- 3.4.5.1 Noise factor of a distributed gain and loss medium -- 3.4.5.2 Noise factor of a purely attenuating medium -- 3.4.5.3 Noise reduction by gain distribution -- 3.4.6 Optical noise accumulation -- 3.4.6.1 Single amplifier noise factor -- 3.4.6.2 Noise factor of a cascade of fibers and amplifiers -- 3.4.7 Signal and noise interplays -- 3.4.7.1 Signal against noise beating -- 3.4.7.2 Optical noise against optical noise beating -- 3.4.7.3 Nonlinear signal and noise interplays -- 3.4.8 Additional electrical noises -- 3.4.8.1 Thermal noise -- 3.4.8.2 Dark current noise -- 3.5 Direct detection (incoherent) optical communications -- 3.5.1 Definitions -- 3.5.1.1 Electrical signal-to-noise ratio definition -- 3.5.1.2 Bit error ratio and receiver sensitivity -- 3.5.2 Ideal shot noise limited receiver -- 3.5.2.1 Signal-to-noise ratio -- 3.5.2.2 Bit error rate and receiver sensitivity -- 3.5.3 Amplifier less thermal noise limited detection -- 3.5.3.1 Signal-to-noise ratio -- 3.5.3.2 Bit error rate and receiver sensitivity -- 3.5.4 Detection of preamplified optical signal -- 3.5.4.1 Electrical signal-to-noise ratio -- 3.5.4.2 Bit error rate and receiver sensitivity -- 3.6 Coherent optical communications -- 3.6.1 Principle of a coherent receiver -- 3.6.2 Single quadrature measurement and balance homodyne detection -- 3.6.2.1 Idealistic quantum receivers for BPSK antipodal signals -- 3.6.2.2 2×2 balanced optical coupler.
3.6.2.3 Single quadrature, balanced homodyne detection arrangement -- 3.6.2.4 Balanced homodyne detection and BPSK receiver fundamental limitation -- 3.6.3 Double quadrature measurement by double balance heterodyne detection -- 3.6.3.1 Double quadrature measurement receiver arrangement -- 3.6.3.2 Double quadrature measurement receiver and QPSK fundamental limitation -- 3.6.3.3 Quadrature amplitude modulation receiver performance -- 3.6.3.4 Actual receiver limitation -- Acknowledgments -- List of acronyms and abbreviations -- References -- 4 Optical amplification -- 4.1 Introduction -- 4.2 EDFA amplification principles -- 4.2.1 Basic principles -- 4.2.2 Influence of the glass host -- 4.2.3 Basic characteristics of EDFAs -- 4.2.4 Fundamental general model -- 4.2.5 Standard confined-doping model -- 4.2.6 Fiber parameters -- 4.2.7 Dynamics behavior -- 4.2.8 Noise characteristics -- 4.3 Characteristics for submarine systems -- 4.3.1 Design for high noise performance -- 4.3.2 Polarization-dependent loss -- 4.3.3 Polarization effects occurring in the doped fibers -- 4.3.4 Impact of pump polarization on PDG -- 4.3.5 Spectral hole burning -- 4.3.6 Modeling of spectral hole burning -- 4.4 EDFA optimization for Long-haul operation -- 4.4.1 Operation with dark fibers -- 4.4.2 Operation with WDM signal input spectrum -- 4.4.3 Gain bandwidth -- 4.4.4 Glass composition -- 4.4.5 Impact of gain excursion on output OSNR -- 4.4.6 Gain equalization -- 4.5 Engineering features -- 4.5.1 Power consumption -- 4.5.2 Pumping technology -- 4.5.3 Submarine engineering specificities -- 4.6 Operation with L-band EDFAs -- 4.6.1 System performance -- 4.6.2 Field implementation issues -- 4.6.3 C+L band systems -- 4.6.4 Efficient C+L architectures -- 4.7 Implementation of Raman amplification -- 4.7.1 Principle of Raman amplification.
4.7.2 Practical implementation as EDFA preamplification -- 4.7.3 All-Raman amplified submarine links -- 4.7.4 Raman implementation in unrepeated systems -- 4.8 Further amplification perspectives -- References -- 5 Ultra-long haul submarine transmission -- 5.1 Introduction -- 5.2 Chromatic dispersion and nonlinear effects -- 5.2.1 Transmission constraints, attenuation, chromatic dispersion, and polarization mode dispersion -- 5.2.2 Fiber infrastructure -- 5.2.2.1 First-generation single-channel systems -- 5.2.2.2 First-generation WDM systems -- 5.2.2.3 10Gbit/s WDM systems -- 5.2.2.4 Coherent submarine systems designed for 100Gbit/s and above -- 5.2.2.5 Nonlinear effect for +D only system -- 5.2.2.6 Additive white Gaussian noise for designing submarine systems -- 5.3 Modulation format and coherent receiver -- 5.3.1 Modulation format -- 5.3.2 Coherent receiver description -- 5.4 Key features of long-haul transmission systems -- 5.4.1 Technical challenge: high capacity per optical fiber -- 5.4.2 Optical signal-to-noise ratio -- 5.4.2.1 OSNR-based Q factor: definition -- Link between Q² and signal-to-noise ratio -- Link between SNR and OSNR -- OSNR definition -- Link between Q² and OSNR -- 5.4.2.2 OSNR degradation due to cable repairs and component aging -- 5.4.2.3 OSNR evolution for a naked cable -- 5.4.3 Propagation impairment -- 5.4.3.1 Transmission impairment due to nonlinear effects -- 5.4.3.2 Time-varying system performance -- 5.4.4 Repeater supervisory -- 5.4.5 Power budget table and typical repeater spacing -- 5.4.5.1 Power budget table -- 5.4.5.2 Typical repeater spacing -- 5.5 Gain equalization -- 5.5.1 Power preemphasis -- 5.5.2 Fixed gain equalizer -- 5.5.2.1 Need for FGEQ in very long-haul WDM transmissions -- 5.5.2.2 Optimum spectral response of the FGEQs -- 5.5.3 Tuneable gain equalizer -- 5.5.4 Impact of nonoptimal gain equalization.
5.6 Transmission systems.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.