ORPP logo
Image from Google Jackets

High-Temperature Solid Oxide Fuel Cells for the 21st Century : Fundamentals, Design and Applications.

By: Contributor(s): Material type: TextTextPublisher: Saint Louis : Elsevier Science & Technology, 2015Copyright date: ©2015Edition: 2nd edDescription: 1 online resource (522 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780124104839
Subject(s): Genre/Form: Additional physical formats: Print version:: High-Temperature Solid Oxide Fuel Cells for the 21st CenturyLOC classification:
  • TK2933.S65 -- H54 2016eb
Online resources:
Contents:
Front Cover -- High-temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications -- Copyright -- Contents -- List of contributors -- Preface -- References -- Chapter 1: Introduction to SOFCs -- 1.1. Introduction -- 1.2. SOFC principles -- 1.3. Problems to be resolved -- 1.4. Historical summary -- 1.5. Zirconia sensors for oxygen measurement -- 1.6. Zirconia availability and production -- 1.7. High-quality electrolyte fabrication processes -- 1.8. Anode-supported SOFC materials and reactions -- 1.9. Interconnection for electrically connecting the cells -- 1.10. Cell and stack designs -- 1.11. SOFC reactor systems -- 1.12. Fuel considerations -- 1.13. Competition and combination with heat engines in applications -- 1.14. SOFC publications -- References -- Chapter 2: History -- 2.1. Introduction -- 2.2. Before the first solid electrolyte gas cells -- 2.3. From solid electrolyte gas cells to solid oxide fuel cells -- 2.4. First detailed investigations of solid oxide fuel cells -- 2.5. Progress in the 1960s -- 2.6. On the path to practical solid oxide fuel cells -- 2.7. Ceramic processing for high-quality products -- 2.8. Anode support -- 2.9. Better cathodes -- 2.10. Low-temperature operation with new interconnects -- 2.11. Application areas -- 2.12. Summary -- References -- Chapter 3: Thermodynamics -- 3.1. Introduction -- 3.2. The ideal reversible SOFC -- 3.3. Ohmic losses and voltage dependence on fuel utilisation -- 3.4. Thermodynamic definition of a fuel cell producing electricity and heat -- 3.5. Thermodynamic theory of hybrid SOFC systems -- 3.6. Design principles of SOFC Hybrid systems -- 3.7. Summary -- References -- Chapter 4: Electrolytes -- 4.1. Introduction -- 4.2. Fluorite-structured electrolytes -- 4.2.1. Zirconia-based oxide ion conductors -- 4.2.2. Ceria-based oxide ion conductors.
4.3. Perovskite and perovskite-related electrolytes -- 4.3.1. LaAlO3 -- 4.3.2. LaGaO3-doped with Ca, Sr and Mg -- 4.3.3. ATiO3-based perovskite (A=alkaline or alkaline earth) -- 4.3.4. High-temperature proton conducting perovskites -- 4.3.5. Oxides with perovskite-related structures: Brownmillerites (e.g. Ba2In2O5) -- 4.4. Alternative-structured electrolyte materials -- 4.4.1. Lanthanum silicate apatite-based electrolytes -- 4.4.2. La2Mo2O9: LAMOX -- 4.5. Summary -- References -- Chapter 5: Anodes -- 5.1. Introduction -- 5.2. Cell performance requirements -- 5.3. Cell lifetime requirements -- 5.4. Catalytic and reforming properties -- 5.5. Anode design and engineering -- 5.6. Conventional nickel-based anodes -- 5.7. Alternative cermet materials -- 5.7.1. Other cermets -- 5.7.2. Ceramic anodes -- 5.7.2.1. Perovskites -- 5.7.2.2. Composite anodes produced by impregnation -- 5.7.2.3. Nano-catalyst exsolution -- 5.8. General conclusions -- References -- Chapter 6: Cathodes -- 6.1. Introduction -- 6.2. Physical and physicochemical properties of perovskite cathode materials -- 6.2.1. Lattice structure -- 6.2.2. Oxygen nonstoichiometry -- 6.2.3. Electrical conductivity -- 6.2.4. Oxygen transport -- 6.3. Chemical stability and compatibility with the cell components -- 6.3.1. Thermodynamic stability of perovskite-type oxides -- 6.3.2. Reaction of perovskites with the zirconia component in YSZ -- 6.3.3. Chromia poisoning -- 6.3.4. Chemical and morphological instability under oxygen potential gradient -- 6.4. Thermo-chemo-mechanical properties -- 6.4.1. Thermal and chemical strain -- 6.4.2. Mechanical properties of LSM, LSC, LSF and LSCF -- 6.5. Summary and further researches -- References -- Chapter 7: Interconnects -- 7.1. Introduction -- 7.2. SOFC environments -- 7.3. Ceramic interconnects -- 7.4. High-temperature alloys for SOFC applications.
7.4.1. Chromia forming alloys -- 7.4.2. Chromium-based alloys -- 7.4.3. Ferritic steels -- 7.4.4. Optimised ferritic steels for SOFC applications -- 7.4.5. Austenitic steels and nickel-based alloys -- 7.5. Growth rates of chromia base surface scales -- 7.6. Degradation in carbon containing anode gases -- 7.7. Dual atmosphere exposures -- 7.8. Specimens thickness dependence of oxidation behaviour -- 7.9. Electronic conductivity of chromia-based scales -- 7.10. Volatile species and protection against chromium evaporation -- 7.11. Interaction between interconnect and anode side contact materials -- 7.12. Interaction of metallic interconnects with sealing materials -- 7.13. Protective coatings and contact materials -- 7.13.1. Short-term applications with SOFCs having an LSCF cathode -- 7.13.2. Short-term applications with SOFCs having an LSM cathode -- 7.13.3. Long-term applications with SOFCs having an LSCF or LSM cathode -- 7.14. Summary -- References -- Chapter 8: Cell and stack design, fabrication and performance -- 8.1. Introduction -- 8.2. Requirements -- 8.2.1. Requirements for single cells -- 8.2.2. Requirements for multi-cell stacks -- 8.3. SOFC single cell -- 8.3.1. Cell design -- 8.3.2. Cell fabrication -- 8.3.3. Cell performance -- 8.4. SOFC multi-cell stacks -- 8.4.1. Stack design -- 8.4.2. Stack fabrication/assembly -- 8.4.3. Stack performance -- 8.5. Summarising remarks -- References -- Chapter 9: System designs and applications -- 9.1. Introduction -- 9.2. Overview of SOFC power systems -- 9.3. Type of SOFC power system -- 9.4. SOFC power system design -- 9.4.1. Stack designs and parameters -- 9.4.2. BOP component designs and selection -- 9.5. Applications of SOFC power systems -- 9.5.1. Portable systems -- 9.5.2. Transportation systems -- 9.5.2.1. Automobile and truck APUs -- 9.5.2.2. Aircraft APUs -- 9.5.3. Stationary systems.
9.5.3.1. Simple cycle power systems -- 9.5.3.2. SOFC/GT hybrid systems -- 9.5.3.3. Integrated gasification fuel cell (IGFC) systems -- 9.6. Solid oxide electrolysis cell (SOEC) systems for hydrogen/chemical production -- 9.7. Summarising remarks -- References -- Chapter 10: Portable early market SOFCs -- 10.1. Introduction -- 10.2. Sensor SOFCs -- 10.3. MEMS-based SOFCs -- 10.4. Micro-tubular SOFCs -- 10.4.1. Need for mSOFCs -- 10.4.2. Invention of mSOFC -- 10.5. Benefit of improved ceramic processing for quality ceramics -- 10.6. Benefits of improved power density -- 10.7. Rapid warm-up -- 10.8. International efforts on micro SOFCs -- 10.9. Demonstration projects -- 10.10. Summary -- References -- Chapter 11: Sources of cell and electrode polarisation losses in SOFCs -- 11.1. Introduction -- 11.2. Cell losses -- 11.2.1. Ohmic losses -- 11.2.2. Overpotential losses -- 11.2.3. Gas-phase losses -- 11.3. Ohmic and gas-phase losses within porous electrodes -- 11.4. Cell losses within a multi-cell stack -- 11.5. Subdivision of local overpotential into specific rate processes -- 11.5.1. Chemical contributions to the overpotential -- 11.5.2. Mixed-conducting SOFC electrodes -- 11.5.3. Chemical O2 exchange on La1-xSrxCoO3-δ -- 11.5.4. Co-limitation of O2 exchange and transport in porous La1-xSrxCoO3-δ -- 11.5.5. Difficulties in subdividing the overpotential with surface-bound reactions -- 11.6. Conclusions and outlook -- References -- Chapter 12: Testing of electrodes, cells and short stacks -- 12.1. Introduction -- 12.2. Testing electrodes -- 12.3. Testing single cells and stacks -- 12.4. Area-specific resistance -- 12.5. Testing cells on alternative fuels -- 12.5.1. SOFC fueled by biofuels -- 12.5.2. SOFC fueled by ammonia -- 12.5.3. SOFC fueled by coal-derived gas -- 12.6. Summary -- References -- Chapter 13: Cell, stack and system modelling.
13.1. Introduction -- 13.2. Basic definitions -- 13.3. Multi-scale modelling -- 13.3.1. Reaction diffusion -- 13.3.2. Multi-scale modelling by computer -- 13.3.3. Cell level modelling -- 13.3.3.1. Micro-modelling of electrodes -- 13.3.3.2. Macro-modelling: Cell level -- 13.3.4. Stack level modelling -- 13.3.4.1. Heat transfer -- 13.3.4.2. Thermo-mechanical models -- 13.4. System level modelling -- 13.4.1. Catalytic partial oxidation -- 13.4.2. Steam reforming -- 13.4.3. Anode off-gas recycle -- 13.5. Oscillations in SOFCs running on methane -- 13.6. Summary and future prospect -- Acknowledgements -- References -- Chapter 14: Fuels and fuel processing in SOFC applications -- 14.1. Introduction -- 14.2. Range of fuels -- 14.2.1. Methane -- 14.2.2. Higher hydrocarbons -- 14.2.3. Oxygenate fuels -- 14.2.4. Solid fuels -- 14.2.5. Hydrogen -- 14.3. Fuel reforming principle -- 14.3.1. Steam reforming -- 14.3.2. Dry reforming -- 14.3.3. Partial oxidation -- 14.3.4. Autothermal reforming -- 14.3.5. Tri-reforming -- 14.3.6. Plasma reforming with/without catalyst -- 14.3.7. Direct electrocatalytic oxidation -- 14.4. Carbon deposition and removal -- 14.5. Impurity tolerance and purification -- 14.6. Application of typical reforming processes for SOFCs -- 14.6.1. A 250kW external fuel processor -- 14.6.2. On-board fuel processing for SOFC-APU -- 14.6.3. Coal-based SOFC system -- 14.6.4. Biomass -- 14.7. Brief consideration of present technology and future prospect -- References -- Index -- Back Cover.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- High-temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications -- Copyright -- Contents -- List of contributors -- Preface -- References -- Chapter 1: Introduction to SOFCs -- 1.1. Introduction -- 1.2. SOFC principles -- 1.3. Problems to be resolved -- 1.4. Historical summary -- 1.5. Zirconia sensors for oxygen measurement -- 1.6. Zirconia availability and production -- 1.7. High-quality electrolyte fabrication processes -- 1.8. Anode-supported SOFC materials and reactions -- 1.9. Interconnection for electrically connecting the cells -- 1.10. Cell and stack designs -- 1.11. SOFC reactor systems -- 1.12. Fuel considerations -- 1.13. Competition and combination with heat engines in applications -- 1.14. SOFC publications -- References -- Chapter 2: History -- 2.1. Introduction -- 2.2. Before the first solid electrolyte gas cells -- 2.3. From solid electrolyte gas cells to solid oxide fuel cells -- 2.4. First detailed investigations of solid oxide fuel cells -- 2.5. Progress in the 1960s -- 2.6. On the path to practical solid oxide fuel cells -- 2.7. Ceramic processing for high-quality products -- 2.8. Anode support -- 2.9. Better cathodes -- 2.10. Low-temperature operation with new interconnects -- 2.11. Application areas -- 2.12. Summary -- References -- Chapter 3: Thermodynamics -- 3.1. Introduction -- 3.2. The ideal reversible SOFC -- 3.3. Ohmic losses and voltage dependence on fuel utilisation -- 3.4. Thermodynamic definition of a fuel cell producing electricity and heat -- 3.5. Thermodynamic theory of hybrid SOFC systems -- 3.6. Design principles of SOFC Hybrid systems -- 3.7. Summary -- References -- Chapter 4: Electrolytes -- 4.1. Introduction -- 4.2. Fluorite-structured electrolytes -- 4.2.1. Zirconia-based oxide ion conductors -- 4.2.2. Ceria-based oxide ion conductors.

4.3. Perovskite and perovskite-related electrolytes -- 4.3.1. LaAlO3 -- 4.3.2. LaGaO3-doped with Ca, Sr and Mg -- 4.3.3. ATiO3-based perovskite (A=alkaline or alkaline earth) -- 4.3.4. High-temperature proton conducting perovskites -- 4.3.5. Oxides with perovskite-related structures: Brownmillerites (e.g. Ba2In2O5) -- 4.4. Alternative-structured electrolyte materials -- 4.4.1. Lanthanum silicate apatite-based electrolytes -- 4.4.2. La2Mo2O9: LAMOX -- 4.5. Summary -- References -- Chapter 5: Anodes -- 5.1. Introduction -- 5.2. Cell performance requirements -- 5.3. Cell lifetime requirements -- 5.4. Catalytic and reforming properties -- 5.5. Anode design and engineering -- 5.6. Conventional nickel-based anodes -- 5.7. Alternative cermet materials -- 5.7.1. Other cermets -- 5.7.2. Ceramic anodes -- 5.7.2.1. Perovskites -- 5.7.2.2. Composite anodes produced by impregnation -- 5.7.2.3. Nano-catalyst exsolution -- 5.8. General conclusions -- References -- Chapter 6: Cathodes -- 6.1. Introduction -- 6.2. Physical and physicochemical properties of perovskite cathode materials -- 6.2.1. Lattice structure -- 6.2.2. Oxygen nonstoichiometry -- 6.2.3. Electrical conductivity -- 6.2.4. Oxygen transport -- 6.3. Chemical stability and compatibility with the cell components -- 6.3.1. Thermodynamic stability of perovskite-type oxides -- 6.3.2. Reaction of perovskites with the zirconia component in YSZ -- 6.3.3. Chromia poisoning -- 6.3.4. Chemical and morphological instability under oxygen potential gradient -- 6.4. Thermo-chemo-mechanical properties -- 6.4.1. Thermal and chemical strain -- 6.4.2. Mechanical properties of LSM, LSC, LSF and LSCF -- 6.5. Summary and further researches -- References -- Chapter 7: Interconnects -- 7.1. Introduction -- 7.2. SOFC environments -- 7.3. Ceramic interconnects -- 7.4. High-temperature alloys for SOFC applications.

7.4.1. Chromia forming alloys -- 7.4.2. Chromium-based alloys -- 7.4.3. Ferritic steels -- 7.4.4. Optimised ferritic steels for SOFC applications -- 7.4.5. Austenitic steels and nickel-based alloys -- 7.5. Growth rates of chromia base surface scales -- 7.6. Degradation in carbon containing anode gases -- 7.7. Dual atmosphere exposures -- 7.8. Specimens thickness dependence of oxidation behaviour -- 7.9. Electronic conductivity of chromia-based scales -- 7.10. Volatile species and protection against chromium evaporation -- 7.11. Interaction between interconnect and anode side contact materials -- 7.12. Interaction of metallic interconnects with sealing materials -- 7.13. Protective coatings and contact materials -- 7.13.1. Short-term applications with SOFCs having an LSCF cathode -- 7.13.2. Short-term applications with SOFCs having an LSM cathode -- 7.13.3. Long-term applications with SOFCs having an LSCF or LSM cathode -- 7.14. Summary -- References -- Chapter 8: Cell and stack design, fabrication and performance -- 8.1. Introduction -- 8.2. Requirements -- 8.2.1. Requirements for single cells -- 8.2.2. Requirements for multi-cell stacks -- 8.3. SOFC single cell -- 8.3.1. Cell design -- 8.3.2. Cell fabrication -- 8.3.3. Cell performance -- 8.4. SOFC multi-cell stacks -- 8.4.1. Stack design -- 8.4.2. Stack fabrication/assembly -- 8.4.3. Stack performance -- 8.5. Summarising remarks -- References -- Chapter 9: System designs and applications -- 9.1. Introduction -- 9.2. Overview of SOFC power systems -- 9.3. Type of SOFC power system -- 9.4. SOFC power system design -- 9.4.1. Stack designs and parameters -- 9.4.2. BOP component designs and selection -- 9.5. Applications of SOFC power systems -- 9.5.1. Portable systems -- 9.5.2. Transportation systems -- 9.5.2.1. Automobile and truck APUs -- 9.5.2.2. Aircraft APUs -- 9.5.3. Stationary systems.

9.5.3.1. Simple cycle power systems -- 9.5.3.2. SOFC/GT hybrid systems -- 9.5.3.3. Integrated gasification fuel cell (IGFC) systems -- 9.6. Solid oxide electrolysis cell (SOEC) systems for hydrogen/chemical production -- 9.7. Summarising remarks -- References -- Chapter 10: Portable early market SOFCs -- 10.1. Introduction -- 10.2. Sensor SOFCs -- 10.3. MEMS-based SOFCs -- 10.4. Micro-tubular SOFCs -- 10.4.1. Need for mSOFCs -- 10.4.2. Invention of mSOFC -- 10.5. Benefit of improved ceramic processing for quality ceramics -- 10.6. Benefits of improved power density -- 10.7. Rapid warm-up -- 10.8. International efforts on micro SOFCs -- 10.9. Demonstration projects -- 10.10. Summary -- References -- Chapter 11: Sources of cell and electrode polarisation losses in SOFCs -- 11.1. Introduction -- 11.2. Cell losses -- 11.2.1. Ohmic losses -- 11.2.2. Overpotential losses -- 11.2.3. Gas-phase losses -- 11.3. Ohmic and gas-phase losses within porous electrodes -- 11.4. Cell losses within a multi-cell stack -- 11.5. Subdivision of local overpotential into specific rate processes -- 11.5.1. Chemical contributions to the overpotential -- 11.5.2. Mixed-conducting SOFC electrodes -- 11.5.3. Chemical O2 exchange on La1-xSrxCoO3-δ -- 11.5.4. Co-limitation of O2 exchange and transport in porous La1-xSrxCoO3-δ -- 11.5.5. Difficulties in subdividing the overpotential with surface-bound reactions -- 11.6. Conclusions and outlook -- References -- Chapter 12: Testing of electrodes, cells and short stacks -- 12.1. Introduction -- 12.2. Testing electrodes -- 12.3. Testing single cells and stacks -- 12.4. Area-specific resistance -- 12.5. Testing cells on alternative fuels -- 12.5.1. SOFC fueled by biofuels -- 12.5.2. SOFC fueled by ammonia -- 12.5.3. SOFC fueled by coal-derived gas -- 12.6. Summary -- References -- Chapter 13: Cell, stack and system modelling.

13.1. Introduction -- 13.2. Basic definitions -- 13.3. Multi-scale modelling -- 13.3.1. Reaction diffusion -- 13.3.2. Multi-scale modelling by computer -- 13.3.3. Cell level modelling -- 13.3.3.1. Micro-modelling of electrodes -- 13.3.3.2. Macro-modelling: Cell level -- 13.3.4. Stack level modelling -- 13.3.4.1. Heat transfer -- 13.3.4.2. Thermo-mechanical models -- 13.4. System level modelling -- 13.4.1. Catalytic partial oxidation -- 13.4.2. Steam reforming -- 13.4.3. Anode off-gas recycle -- 13.5. Oscillations in SOFCs running on methane -- 13.6. Summary and future prospect -- Acknowledgements -- References -- Chapter 14: Fuels and fuel processing in SOFC applications -- 14.1. Introduction -- 14.2. Range of fuels -- 14.2.1. Methane -- 14.2.2. Higher hydrocarbons -- 14.2.3. Oxygenate fuels -- 14.2.4. Solid fuels -- 14.2.5. Hydrogen -- 14.3. Fuel reforming principle -- 14.3.1. Steam reforming -- 14.3.2. Dry reforming -- 14.3.3. Partial oxidation -- 14.3.4. Autothermal reforming -- 14.3.5. Tri-reforming -- 14.3.6. Plasma reforming with/without catalyst -- 14.3.7. Direct electrocatalytic oxidation -- 14.4. Carbon deposition and removal -- 14.5. Impurity tolerance and purification -- 14.6. Application of typical reforming processes for SOFCs -- 14.6.1. A 250kW external fuel processor -- 14.6.2. On-board fuel processing for SOFC-APU -- 14.6.3. Coal-based SOFC system -- 14.6.4. Biomass -- 14.7. Brief consideration of present technology and future prospect -- References -- Index -- Back Cover.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.