Magnetism of Surfaces, Interfaces, and Nanoscale Materials.
Material type:
- text
- computer
- online resource
- 9780444626394
- TK454.4.M3 -- .M346 2016eb
Front Cover -- Magnetism of Surfaces, Interfaces, and Nanoscale Materials -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Growth and Characterization of Magnetic Thin Film and Nanostructures -- 1. Introduction -- 2. Thin-Film Growth -- 2.1. Thermal and Electron Beam Evaporation -- 2.2. Sputter Deposition -- 2.2.1. DC Sputter Deposition -- 2.2.2. RF Sputter Deposition -- 2.2.3. Magnetron Sputter Deposition -- 3. Characterization Techniques -- 3.1. Surface Characterization -- 3.1.1. Atomic Force Microscopy -- 3.1.2. Magnetic Force Microscopy -- 3.2. Static Magnetic Characterization -- 3.2.1. MOKE Spectroscopy -- 3.2.2. Vibrating Sample Magnetometry -- 3.3. Dynamic Magnetic Characterization -- 3.3.1. FMR Spectroscopy -- 3.3.2. BLS Spectroscopy -- 4. Magnetic Nanostructures -- 4.1. Lithography -- 4.2. Pattern Transfer -- 4.3. Practical Examples -- 4.3.1. Planar Magnetic Nanostructures -- 4.3.2. Thickness-Modulated Magnetic Nanostructures -- 4.3.3. Bicomponent Magnetic Nanostructures -- 5. Conclusion -- References -- Chapter 2: Element-Specific Probes of Magnetism -- 1. Introduction -- 2. Fundamental Aspects of Optical Excitation -- 2.1. Electronic States in Solids -- 2.2. Spectroscopy of Core States -- 2.3. X-Ray Photoemission Spectroscopy -- 2.4. X-Ray Absorption Spectroscopy -- 2.5. X-Ray Reflection Spectroscopy -- 3. Spin-Sensitive Photoemission -- 3.1. Core-Level Photoemission from Ferromagnets -- 3.1.1. Spin Polarimeter Schemes -- 3.1.2. 3s XPS -- 3.1.3. 2p XPS -- 3.2. Magnetic Dichroism in Photoemission -- 3.2.1. Magnetic Circular Dichroism in Photoemission -- 3.2.2. Role of Angular Selection in Photoemission -- 4. Magnetic Dichroism in X-Ray Absorption -- 4.1. Magnetic X-Ray Circular Dichroism -- 4.2. Magnetic X-Ray Linear Dichroism -- 4.3. Hybrid Systems -- 5. Magnetic Resonant X-Ray Scattering -- 5.1. Basic Aspects.
5.2. Complex Layered Structures -- 5.3. Antiferromagnets -- 6. Addressing Picosecond Magnetization Dynamics -- 7. Ultrafast Demagnetization Dynamics -- 8. Summary and Conclusions -- References -- Chapter 3: Magnetization Dynamics -- 1. Introduction -- 2. Analytic Results -- 2.1. Infinitely Extended Flat Plate: In-Plane Field -- 2.2. Spin Waves Propagating Perpendicular to the Surface, Conducting Films -- 2.3. Surface Modes for Spin Waves Propagating Parallel to the Film Surface -- 2.4. Infinitely Extended Flat Plate-Perpendicular-to-Plane Magnetization -- 2.5. Nanostructures -- 2.6. Antiferromagnets -- 3. Examples of Experimental Characterization of Ferromagnetic Samples -- 4. FMR Techniques -- 4.1. Magnetic Damping -- 4.2. Broadband FMR-Frequency Swept -- 4.3. Broadband FMR-Field Swept -- 4.3.1. Multimode Cavity Configuration -- 4.3.2. Coplanar Waveguide Configuration -- 4.3.3. Results -- 4.3.3.1. Single-Crystal Samples -- 4.3.3.2. Polycrystalline Samples -- 4.4. Inhomogeneous rf Driving in FMR -- 5. Brillouin Light Scattering -- 5.1. BLS Spectroscopy -- 5.2. BLS Microscopy -- 5.3. Phase- and Time-Resolved BLS -- 6. Summary and Future Outlook -- References -- Chapter 4: Nonlinear Behavior in Metallic Thin Films and Nanostructures -- 1. Introduction -- 2. Theory of One Macrospin -- 2.1. Equations of Motion -- 2.2. Ways of Entering the Chaotic Regime -- 2.3. Ways to Characterize the Chaos -- 2.3.1. Lyapunov Exponents -- 2.3.2. Bifurcation Diagrams -- 2.3.3. Fourier Transforms -- 2.3.4. Other Methods -- 2.4. Breakdown of the Macrospin Model -- 3. Nonlinear Processes in Thin Films -- 3.1. Linear Spin Waves in a Thin Film -- 3.2. Perturbative Expansion -- 3.3. Nonlinear Thresholds in Thin Films -- 3.3.1. Three-Wave Threshold -- 3.3.2. Four-Wave Threshold -- 3.4. Nonlinear Damping -- 4. Nonlinear Processes in Nanostructures -- 4.1. Experimental Techniques.
4.2. Nanostrips -- 4.2.1. Increase in Damping -- 4.2.2. Two Mode Mixing and Frequency Combs -- 4.3. Nanoelements -- 4.3.1. Nonlinear Vortex Dynamics -- 4.3.2. Nonresonant Nonlinear Processes -- 5. Conclusion -- References -- Chapter 5: Linear Magnetization Dynamics in an Array of Dipolarly Coupled Magnetic Nanodots -- 1. Introduction -- 2. Theory of Collective SW Excitation in an Array of Magnetic Dots -- 2.1. Principal Equations -- 2.2. General Formalism for Collective SW Excitations in a Dot Array -- 2.3. Accounting for the Effects of Weak Perturbations -- 2.4. Collective SWs of a Dot Array in a Periodic Ground State -- 3. Applications of the General Theory -- 3.1. SW Spectra of a Dot Array with Rectangular and Hexagonal Lattice -- 3.2. Localized SW Modes Caused by a Point Defect in an Array of Magnetic Dots -- 3.3. Conditions of the Frequency Nonreciprocity of SWs in a Magnetic Dot Array -- 4. Conclusions -- References -- Chapter 6: Thermal Properties of Magnetic Multilayers and Nanostructures: Applications to Static and Dynamic Behavior -- 1. Introduction -- 2. Theoretical Treatment of Magnetic Multilayers -- 3. Examples of Magnetic Multilayer Structures -- 3.1. Gd/Y Multilayers -- 3.2. Surface Effects in Multilayers -- 3.3. Fe/Gd Multilayers-Ferromagnetic Films with Antiferromagnetic Coupling -- 3.4. Magnetically Tunable Thermal Hysteresis -- 4. Dynamic Modes in Multilayers -- 5. A Single Method that Provides Static and Dynamic Results -- 5.1. Exchange Spring Structures -- 5.2. Other Examples -- 6. Nanoparticles and Nanostructures -- 6.1. Reduced Coordination Effects in Nanoparticles -- 6.2. Superparamagnetism and Magnetic Nanoparticles -- 7. Other Methods -- 7.1. Micromagnetics Methods -- 7.2. Monte Carlo Calculations -- 8. Summary -- References -- Chapter 7: Spintronic Oscillators Based on Spin-Transfer Torque and Spin-Orbit Torque.
1. Introduction -- 1.1. Frequency Tunability -- 1.2. Phase Noise, Q-Factor, and Linewidth -- 1.3. Power Dissipation -- 1.4. Supply Voltage and Output Power -- 1.5. Injection Locking -- 1.6. Immunity to Disturbances (Supply, Load Variations, and Substrate) -- 1.7. Cost (Price, Size, and Design Time) -- 2. STT and Magnetoresistive Effects -- 2.1. Micromagnetic Model -- 3. Spin-Hall Effect and Anisotropic Magnetoresistance -- 3.1. Micromagnetic Model -- 4. State of the Art of STT Oscillators -- 4.1. Spin Valves-One Free Layer, One Polarizer-Nonuniform Current Injection Via a Point Contact -- 4.2. Spin Valves-One Free Layer, One Polarizer-Uniform Current Injection -- 4.3. Magnetic Tunnel Junction -- 5. State of the Art of SHOs -- 6. Summary and Future Perspectives -- References -- Chapter 8: Domain Wall Motion in Nanostructures -- 1. Introduction -- 2. Domain Wall Statics -- 3. Domain Wall Dynamics -- 3.1. Domain Wall Motion in Defect-Free Nanostrips -- 3.2. Domain Wall Motion and Dynamics in the Presence of Pinning -- 3.3. Domain Wall Dynamics Under Current -- 3.3.1. Currents Injected Perpendicular to the Magnetic Film -- 4. Domain Wall-Based Devices -- 4.1. Domain Wall-Switched MRAM and the Spintronic Memristor -- 4.2. Domain Wall Turn Counter -- 4.3. Digital Information and the Domain Wall Racetrack -- 4.4. Domain Wall Logic Gates and Circuits -- 4.5. The T Gate -- 4.6. NOT Gate -- 5. Conclusion -- References -- Chapter 9: Giant Magnetoresistance and Applications -- 1. Introduction -- 2. Two-Current Model of Transport in Magnetic 3d Transition Metals -- 3. Artificial Magnetic Multilayers: Interlayer Exchange Coupling -- 4. Experimental Results on Current-in-Plane GMR -- 5. Physical Origin of Current-in-Plane GMR -- 6. Theoretical Description of Current-in-Plane GMR -- 6.1. Collinear Configurations: Quasiclassical Description.
6.2. Noncollinear Configuration: Quasiclassical Description -- 6.3. Role of Spin-Mixing Processes -- 6.4. Influence of Quantum Size Effect -- 6.5. Other Theoretical Aspects -- 7. Current-Perpendicular-to-Plane GMR -- 8. GMR in Other Systems -- 9. Practical Applications of GMR and Concluding Remarks -- References -- Chapter 10: Planar Magnetic Devices for Signal Processing in the Microwave and Millimeter Wave Frequency Range -- 1. Introduction -- 2. Fabrication and Characterization Methods -- 3. Planar Devices Using Ferromagnetic Metals -- 3.1. Notch Filters -- 3.2. Local Band-Pass Filter -- 3.3. Phase Shifters -- 3.4. Nonlinear Devices -- 3.5. Nonreciprocal Devices -- 3.6. On-Wafer Inductors -- 4. Planar Devices with Other Materials -- 4.1. Hexagonal Ferrites -- 4.2. Antiferromagnets -- 4.3. Liquid Crystals -- 4.4. Voltage-Controlled Devices -- 5. Summary and Discussion -- References -- Index -- Back Cover.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.