ORPP logo

Lie Groups : (Record no. 79880)

MARC details
000 -LEADER
fixed length control field 05157nam a22004693i 4500
001 - CONTROL NUMBER
control field EBC3330427
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729125050.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2009 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781614446040
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780883857595
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC3330427
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL3330427
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr10733070
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)929120365
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA387.P65 2009eb
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 512.482
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Pollatsek, Harriet.
245 10 - TITLE STATEMENT
Title Lie Groups :
Remainder of title A Problem Oriented Introduction Via Matrix Groups.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 2009.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2009.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (190 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note cover -- copyright page -- title page -- Preface -- Notational Conventions -- Contents -- 1 Symmetries of vector spaces -- 1.1 What is a symmetry? -- 1.2 Distance is fundamental -- 1.3 Groups of symmetries -- 1.4 Bilinear forms and symmetries of spacetime -- 1.5 Putting the pieces together -- 1.6 A broader view: Lie groups -- 2 Complex numbers, quaternions and geometry -- 2.1 Complex numbers -- 2.2 Quaternions -- 2.3 The geometry of rotations of R^3 -- 2.4 Putting the pieces together -- 2.5 A broader view: octonions -- 3 Linearization -- 3.1 Tangent spaces -- 3.2 Group homomorphisms -- 3.3 Differentials -- 3.4 Putting the pieces together -- 3.5 A broader view: Hilbert's fifth problem -- 4 One-parameter subgroups and the exponential map -- 4.1 One-parameter subgroups -- 4.2 The exponential map in dimension 1 -- 4.3 Calculating the matrix exponential -- 4.4 Properties of the matrix exponential -- 4.5 Using exp to determine L.G/ -- 4.6 Differential equations -- 4.8 A broader view: Lie and differential equations -- 4.9 Appendix on convergence -- 5 Lie algebras -- 5.1 Lie algebras -- 5.2 Adjoint maps-big 'A' and small 'a' -- 5.3 Putting the pieces together -- 5.4 A broader view: Lie theory -- 6 Matrix groups over other fields -- 6.1 What is a field? -- 6.2 The unitary group -- 6.3 Matrix groups over finite fields -- 6.4 Putting the pieces together -- Suggestions for further reading -- 6.5 A broader view: finite groups of Lie type and simple groups -- Appendix I Linear algebra facts -- Appendix II Paper assignment used at Mount Holyoke College -- Appendix III Opportunities for further study -- Metric vector spaces and symmetries -- Lie algebras and Chevalley groups -- Quaternions and octonions -- Connections to physics -- Lie groups as manifolds -- Solutions to selected problems -- 1. Symmetries of vector spaces -- 1.1. What is a symmetry?.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 1.2. Distance is fundamental -- 1.3. Groups of symmetries -- 1.4. Bilinear forms and symmetries of spacetime -- 2. Complex numbers, quaternions and geometry -- 2.1. Complex numbers -- 2.2. Quaternions -- 2.3. The geometry of rotations of R^3 -- 3. Linearization -- 3.1. Tangent spaces -- 3.2. Group homomorphisms -- 3.3. Differentials -- 4. One-parameter subgroups and the exponential map -- 4.1. One-parameter subgroups -- 4.2. The exponential map in dimension 1 -- 4.3. Calculating the matrix exponential -- 4.4. Properties of the matrix exponential -- 4.5. Using exp to determine L.G/ -- 4.6. Differential equations -- 5. Lie algebras -- 5.1. Lie algebras -- 5.2. Adjoint maps-big 'A' and small 'a' -- 6. Matrix groups over other fields -- 6.1. What is a field? -- 6.2. The unitary group -- 6.3. Matrix groups over finite fields -- Bibliography -- Index -- Notation -- About the Author.
520 ## - SUMMARY, ETC.
Summary, etc. This textbook is a complete introduction to Lie groups for undergraduate students. The only prerequisites are multi-variable calculus and linear algebra. The emphasis is placed on the algebraic ideas, with just enough analysis to define the tangent space and the differential and to make sense of the exponential map. This textbook works on the principle that students learn best when they are actively engaged. To this end nearly 200 problems are included in the text, ranging from the routine to the challenging level. Every chapter has a section called "Putting the pieces together" in which all definitions and results are collected for reference and further reading is suggested.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Lie groups.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Lie groups -- Problems, exercises, etc.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Matrix groups.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Pollatsek, Harriet
Title Lie Groups
Place, publisher, and date of publication Providence : American Mathematical Society,c2009
International Standard Book Number 9780883857595
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330427">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330427</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.