ORPP logo

A Guide to Real Variables. (Record no. 79822)

MARC details
000 -LEADER
fixed length control field 07590nam a22004573i 4500
001 - CONTROL NUMBER
control field EBC3330367
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729125049.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2009 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780883859162
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780883853443
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC3330367
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL3330367
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr10728516
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)929120456
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA331.5 -- .K68 2009eb
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 515.8
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Krantz, Steven G.
245 12 - TITLE STATEMENT
Title A Guide to Real Variables.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 2009.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2009.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (164 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- Contents -- Preface -- 1 Basics -- 1.1 Sets -- 1.2 Operations on Sets -- 1.3 Functions -- 1.4 Operations on Functions -- 1.5 Number Systems -- 1.5.1 The Real Numbers -- 1.6 Countable and Uncountable Sets -- 2 Sequences -- 2.1 Introduction to Sequences -- 2.1.1 The Definition and Convergence -- 2.1.2 The Cauchy Criterion -- 2.1.3 Monotonicity -- 2.1.4 The Pinching Principle -- 2.1.5 Subsequences -- 2.1.6 The Bolzano-Weierstrass Theorem -- 2.2 Limsup and Liminf -- 2.3 Some Special Sequences -- 3 Series -- 3.1 Introduction to Series -- 3.1.1 The Definition and Convergence -- 3.1.2 Partial Sums -- 3.2 Elementary Convergence Tests -- 3.2.1 The Comparison Test -- 3.2.2 The Cauchy Condensation Test -- 3.2.3 Geometric Series -- 3.2.4 The Root Test -- 3.2.5 The Ratio Test -- 3.2.6 Root and Ratio Tests for Divergence -- 3.3 Advanced Convergence Tests -- 3.3.1 Summation by Parts -- 3.3.2 Abel's Test -- 3.3.3 Absolute and Conditional Convergence -- 3.3.4 Rearrangements of Series -- 3.4 Some Particular Series -- 3.4.1 The Series for e -- 3.4.2 Other Representations for e -- 3.4.3 Sums of Powers -- 3.5 Operations on Series -- 3.5.1 Sums and Scalar Products of Series -- 3.5.2 Products of Series -- 3.5.3 The Cauchy Product -- 4 The Topology of the Real Line -- 4.1 Open and Closed Sets -- 4.1.1 Open Sets -- 4.1.2 Closed Sets -- 4.1.3 Characterization of Open and Closed Sets in Terms of Sequences -- 4.1.4 Further Properties of Open and Closed Sets -- 4.2 Other Distinguished Points -- 4.2.1 Interior Points and Isolated Points -- 4.2.2 Accumulation Points -- 4.3 Bounded Sets -- 4.4 Compact Sets -- 4.4.1 Introduction -- 4.4.2 The Heine-Borel Theorem -- 4.4.3 The Topological Characterization of Compactness -- 4.5 The Cantor Set -- 4.6 Connected and Disconnected Sets -- 4.6.1 Connectivity -- 4.7 Perfect Sets -- 5 Limits and the Continuity of Functions.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 5.1 Definitions and Basic Properties -- 5.1.1 Limits -- 5.1.2 A Limit that Does Not Exist -- 5.1.3 Uniqueness of Limits -- 5.1.4 Properties of Limits -- 5.1.5 Characterization of Limits Using Sequences -- 5.2 Continuous Functions -- 5.2.1 Continuity at a Point -- 5.2.2 The Topological Approach to Continuity -- 5.3 Topological Properties and Continuity -- 5.3.1 The Image of a Function -- 5.3.2 Uniform Continuity -- 5.3.3 Continuity and Connectedness -- 5.3.4 The Intermediate Value Property -- 5.4 Monotonicity and Classifying Discontinuities -- 5.4.1 Left and Right Limits -- 5.4.2 Types of Discontinuities -- 5.4.3 Monotonic Functions -- 6 The Derivative -- 6.1 The Concept of Derivative -- 6.1.1 The Definition -- 6.1.2 Properties of the Derivative -- 6.1.3 The Weierstrass Nowhere Differentiable Function -- 6.1.4 The Chain Rule -- 6.2 The Mean Value Theorem and Applications -- 6.2.1 Local Maxima and Minima -- 6.2.2 Fermat's Test -- 6.2.3 Darboux's Theorem -- 6.2.4 The Mean Value Theorem -- 6.2.5 Examples of the Mean Value Theorem -- 6.3 Further Results on the Theory of Differentiation -- 6.3.1 l'Hopital's Rule -- 6.3.2 Derivative of an Inverse Function -- 6.3.3 Higher Derivatives -- 6.3.4 Continuous Differentiability -- 7 The Integral -- 7.1 The Concept of Integral -- 7.1.1 Partitions -- 7.1.2 Refinements of Partitions -- 7.1.3 Existence of the Riemann Integral -- 7.1.4 Integrability of Continuous Functions -- 7.2 Properties of the Riemann Integral -- 7.2.1 Existence Theorems -- 7.2.2 Inequalities for Integrals -- 7.2.3 Preservation of Integrable Functions Under Composition -- 7.2.4 The Fundamental Theorem of Calculus -- 7.2.5 Mean Value Theorems -- 7.3 Further Results on the Riemann Integral -- 7.3.1 The Riemann-Stieltjes Integral -- 7.3.2 Riemann's Lemma -- 7.4 Advanced Results on Integration Theory.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 7.4.1 Existence for the Riemann-Stieltjes Integral -- 7.4.2 Integration by Parts -- 7.4.3 Linearity Properties -- 7.4.4 Bounded Variation -- 8 Sequences and Series of Functions -- 8.1 Partial Sums and Pointwise Convergence -- 8.1.1 Sequences of Functions -- 8.1.2 Uniform Convergence -- 8.2 More on Uniform Convergence -- 8.2.1 Commutation of Limits -- 8.2.2 The Uniform Cauchy Condition -- 8.2.3 Limits of Derivatives -- 8.3 Series of Functions -- 8.3.1 Series and Partial Sums -- 8.3.2 Uniform Convergence of a Series -- 8.3.3 The Weierstrass M-Test -- 8.4 The Weierstrass Approximation Theorem -- 8.4.1 Weierstrass's Main Result -- 9 Advanced Topics -- 9.1 Metric Spaces -- 9.1.1 The Concept of a Metric -- 9.1.2 Examples of Metric Spaces -- 9.1.3 Convergence in a Metric Space -- 9.1.4 The Cauchy Criterion -- 9.1.5 Completeness -- 9.1.6 Isolated Points -- 9.2 Topology in a Metric Space -- 9.2.1 Balls in a Metric Space -- 9.2.2 Accumulation Points -- 9.2.3 Compactness -- 9.3 The Baire Category Theorem -- 9.3.1 Density -- 9.3.2 Closure -- 9.3.3 Baire's Theorem -- 9.4 The Ascoli-Arzela Theorem -- 9.4.1 Equicontinuity -- 9.4.2 Equiboundedness -- 9.4.3 The Ascoli-Arzela Theorem -- Glossary of Terms from Real Variable Theory -- Bibliography -- Index -- About the Author.
520 ## - SUMMARY, ETC.
Summary, etc. The purpose of A Guide to Real Variables is to provide an aid and conceptual support for the student studying for the qualifying exam in real variables. Beginning with the foundations of the subject, the text moves rapidly but thoroughly through basic topics like completeness, convergence, sequences, series, compactness, topology and the like. All the basic examples like the Cantor set, the Weierstrass nowhere differentiable function, the Weierstrass approximation theory, the Baire category theorem, and the Ascoli-Arzela theorem are treated.The book contains over 100 examples, and most of the basic proofs. It illustrates both the theory and the practice of this sophisticated subject. Graduate students studying for the qualifying exams will find this book to be a concise, focused and informative resource. Professional mathematicians who need a quick review of the subject, or need a place to look up a key fact, will find this book to be a useful resource too.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Functions of real variables.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Krantz, Steven G.
Title A Guide to Real Variables
Place, publisher, and date of publication Providence : American Mathematical Society,c2009
International Standard Book Number 9780883853443
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330367">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330367</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.