Classroom Resource Materials : (Record no. 79811)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 07929nam a22004693i 4500 |
001 - CONTROL NUMBER | |
control field | EBC3330355 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240729125049.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2013 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781614441106 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9780883857816 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC3330355 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL3330355 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaPaEBR)ebr10722466 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)847680790 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | QA303.2.K59 2013eb |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 515 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Klymchuk, Sergiy. |
245 10 - TITLE STATEMENT | |
Title | Classroom Resource Materials : |
Remainder of title | Paradoxes and Sophisms in Calculus. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Providence : |
Name of producer, publisher, distributor, manufacturer | American Mathematical Society, |
Date of production, publication, distribution, manufacture, or copyright notice | 2013. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2013. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (113 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | cover -- copyright page -- title page -- Contents -- Introduction -- Acknowledgments -- I Paradoxes -- Functions and Limits -- Laying bricks -- Spiral curves -- A paradoxical fractal curve: the Koch snowflake -- A tricky fractal area: the Sierpinski carpet -- A mysterious fractal set: the Cantor ternary set -- A misleading sequence -- Remarkable symmetry -- Rolling a barrel -- A cat on a ladder -- Sailing -- Encircling the Earth -- A tricky equation -- A snail on a rubber rope -- Derivatives and Integrals -- An alternative product rule -- Missing information? -- A paint shortage -- Racing marbles -- A paradoxical pair of functions -- An unruly function -- Jagged peaks galore -- Another paradoxical pair of functions -- II Sophisms -- Functions and Limits -- Evaluation of lim_n _k=1n1n2+k proves that 1=0. -- Evaluation of lim_x0 (xsin1x ) proves that 1 = 0. -- Evaluation of lim_x0+ (xx) shows that 1 = 0. -- Evaluation of lim_n [n]n demonstrates that 1=. -- Trigonometric limits prove that sinkx = k sinx. -- Evaluation of a limit of a sum proves that 1=0. -- Analysis of the function x+yx-y proves that 1 = -1. -- Analysis of the function ax+yx+ay proves that a = 1a, for any value a 0. -- One-to-one correspondences imply that 1 = 2. -- Aristotle's wheel implies that R = r. -- Logarithmic inequalities show 2 > -- 3. -- Analysis of the logarithm function implies 2 > -- 3. -- Analysis of the logarithm function proves 14 > -- 12. -- Limit of perimeter curves shows that 2 = 1. -- Limit of perimeter curves shows = 2. -- Serret's surface area definition proves that = . -- Achilles and the tortoise -- Reasonable estimations lead to 1,000,000 2,000,000. -- Properties of square roots prove 1 = -1. -- Analysis of square roots shows that 2=-2. -- Properties of exponents show that 3 = -3. -- A slant asymptote proves that 2 = 1. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Euler's interpretation of series shows 12 = 1-1+1-1+@let@token . -- Euler's manipulation of series proves -1> -- > -- 1. -- A continuous function with a jump discontinuity -- Evaluation of Taylor series proves ln2=0. -- Derivatives and Integrals -- Trigonometric integration shows 1 = C, for any real number C. -- Integration by parts demonstrates 1 = 0. -- Division by zero is possible. -- Integration proves sin2 x = 1 for any value of x. -- The u-substitution method shows that 2 < -- 0 < -- . -- ln2 is not defined. -- is not defined. -- Properties of indefinite integrals show 0=C, for any real number C. -- Volumes of solids of revolution demonstrate that 1 = 2. -- An infinitely fast fall -- A positive number equals a negative number. -- The power rule for differentiation proves that 2=1. -- III Solutions to Paradoxes -- Functions and Limits -- Laying bricks -- Spiral curves -- A paradoxical fractal curve: the Koch snowflake. -- A tricky fractal area: the Sierpinski carpet -- A mysterious fractal set: the Cantor ternary set -- A misleading sequence -- Remarkable symmetry: Reuleaux polygons -- Rolling a barrel -- A cat on a ladder -- Sailing -- Encircling the Earth -- A tricky equation -- A snail on a rubber rope -- Derivatives and Integrals -- An alternative product rule -- Missing information? -- A paint shortage -- Racing marbles -- A paradoxical pair of functions -- An unruly function -- Jagged peaks galore -- Another paradoxical pair of functions -- IV Solutions to Sophisms -- Functions and Limits -- Evaluation of lim_n n_k=1 1n2+k proves that 1 = 0. -- Evaluation of lim_x 0 ( xsin1x ) proves that 1 = 0. -- Evaluation of lim_x 0+ (xx) shows that 1 = 0. -- Evaluation of lim_n [n]n demonstrates that 1 = . -- Trigonometric limits prove that sinkx = ksinx. -- Evaluation of a limit of a sum proves that 1 = 0. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Analysis of the function x + yx - y proves that 1 = -1. -- Analysis of the function ax + yx + ay proves that a = 1a, for any value a 0. -- One-to-one correspondences imply that 1 = 2. -- Aristotle's wheel implies that R = r. -- Logarithmic inequalities show 2 > -- 3. -- Analysis of the logarithm function implies 2 > -- 3. -- Analysis of the logarithm function proves 14 > -- 12. -- Limit of perimeter curves shows that 2 = 1. -- Limit of perimeter curves shows = 2. -- Serret's surface area definition proves that = . -- Achilles and the tortoise -- Reasonable estimations lead to 1,000,000 2,000,000. -- Properties of square roots prove 1 = -1. -- Analysis of square roots shows that 2 = -2. -- Properties of exponents show that 3=-3. -- A slant asymptote proves that 2=1. -- Euler's interpretation of series shows 12 = 1-1+1-1+@let@token . -- Euler's manipulation of series proves -1> -- > -- 1. -- A continuous function with a jump discontinuity. -- Evaluation of Taylor series proves ln2=0. -- Derivatives and Integrals -- Trigonometric Integration shows 1 = C, for any real number C. -- Integration by parts demonstrates 1 = 0. -- Division by zero is possible. -- Integration proves sin2 x = 1 for any value of x. -- The u-substitution method shows that 2 < -- 0 < -- . -- ln2 is not defined. -- is not defined. -- Properties of indefinite integrals show 0 = C, for any real number C. -- Volumes of solids of revolution demonstrate that 1 = 2. -- An infinitely fast fall -- A positive number equals a negative number. -- The power rule for differentiation proves that 2=1. -- Bibliography -- About the Authors. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Paradoxes and Sophisms in Calculus offers a delightful supplementary resource to enhance the study of single variable calculus. By the word paradox the authors mean a surprising, unexpected, counter-intuitive statement that looks invalid, but in fact is true. The word sophism describes intentionally invalid reasoning that looks formally correct, but in fact contains a subtle mistake or flaw. In other words, a sophism is a false proof of an incorrect statement. A collection of over fifty paradoxes and sophisms showcases the subtleties of this subject and leads students to contemplate the underlying concepts. A number of the examples treat historically significant issues that arose in the development of calculus, while others more naturally challenge readers to understand common misconceptions. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Calculus. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Staples, Susan. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Klymchuk, Sergiy |
Title | Classroom Resource Materials |
Place, publisher, and date of publication | Providence : American Mathematical Society,c2013 |
International Standard Book Number | 9780883857816 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330355">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330355</a> |
Public note | Click to View |
No items available.