ORPP logo

Extending Intersection Homology Type Invariants to Non-Witt Spaces. (Record no. 69953)

MARC details
000 -LEADER
fixed length control field 03376nam a22004573i 4500
001 - CONTROL NUMBER
control field EBC3114458
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729124608.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2002 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781470403584
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780821829882
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC3114458
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL3114458
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11041236
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)922964903
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA612.32 -- .B36 2002eb
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 510 s;514/.23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Banagl, Markus.
245 10 - TITLE STATEMENT
Title Extending Intersection Homology Type Invariants to Non-Witt Spaces.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 2002.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2002.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (101 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Memoirs of the American Mathematical Society ;
Volume/sequential designation v.160
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- Contents -- Chapter 1. Introduction -- 1. History -- 2. Motivation -- 3. The Main Result: A Postnikov System of Lagrangian Structures -- 4. Consequences: Characteristic Classes -- 5. Ordered Resolutions - A Model Construction -- 6. Applications -- 7. Further Developments -- 8. Sign Questions -- 9. Some Remarks on Coefficients -- 10. Acknowledgments -- 11. Notation -- Chapter 2. The Algebraic Framework -- 1. The Lifting Obstruction -- 2. The Category of Self-Dual Sheaves Compatible with IH -- 3. Lagrangian Structures -- 4. Extracting Lagrangian Structures from Self-Dual Sheaves -- 5. Lagrangian Structures as Building Blocks for Self-Dual Sheaves -- 6. A Postnikov system -- Chapter 3. Ordered Resolutions -- 1. The Purpose of the Construction -- 2. Definitions -- 3. The PL Construction -- 4. Inductive Singularization of a Manifold -- Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)] -- 1. The Closed Objects -- 2. The Admissible Cobordisms -- 3. The Cobordism Invariance of σ -- 4. Relation to Witt Space Cobordism -- Chapter 5. Lagrangian Structures and Ordered Resolutions -- 1. Statement of Result -- 2. The inductive set-up -- 3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)] -- 4. Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ -- 5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is self-dual -- 6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)] -- 7. The definition of L[sup(.)](X[sup((m+1))]) -- Appendix A. On Signs -- Bibliography.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Intersection homology theory.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Duality theory (Mathematics).
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Banagl, Markus
Title Extending Intersection Homology Type Invariants to Non-Witt Spaces
Place, publisher, and date of publication Providence : American Mathematical Society,c2002
International Standard Book Number 9780821829882
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Memoirs of the American Mathematical Society
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114458">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114458</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.