ORPP logo

Analogue of a Reductive Algebraic Monoid Whose Unit Group Is a Kac-Moody Group. (Record no. 69614)

MARC details
000 -LEADER
fixed length control field 03415nam a22004693i 4500
001 - CONTROL NUMBER
control field EBC3114083
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729124559.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2005 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781470404246
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780821836484
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC3114083
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL3114083
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11039702
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)922981605
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA252.3 -- .M65 2005eb
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 510 s;512/.55
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Mokler, Claus.
245 10 - TITLE STATEMENT
Title Analogue of a Reductive Algebraic Monoid Whose Unit Group Is a Kac-Moody Group.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 2005.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2005.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (104 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Memoirs of the American Mathematical Society ;
Volume/sequential designation v.174
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- Contents -- Introduction -- Contents -- Chapter 1. Preliminaries -- 1.1. Kac-Moody algebras, Kac-Moody groups and the algebra of strongly regular functions -- 1.2. A generalization of affine toric varieties -- Chapter 2. The monoid G and its structure -- 2.1. The face lattice of the Tits cone -- 2.2. The definition of the monoid G -- 2.3. Formulas for computations in G -- 2.4. The unit regularity of G -- 2.5. The Weyl monoid W and the monoids T, N -- 2.6. Some double coset partitions of G -- 2.7. Constructing G from the twin root datum -- 2.8. The action of G on the admissible modules of ο -- 2.9. The submonoids G[sub(J)] (J ⊆ I) -- 2.10. The monoid G for a decomposable matrix A -- Chapter 3. An algebraic geometric setting -- 3.1. Varieties and pnc-varieties -- 3.2. Weak (pnc-)algebraic monoids -- Chapter 4. A generalized Tannaka-Krein reconstruction -- Chapter 5. The proof of G = G and some other theorems -- 5.1. The coordinate rings and closures of T, T[sub(J)] (J ⊆ I), and T[sub(rest)] -- 5.2. The orbits G[sub(J)](L(Λ)[sub(Λ)]) (J ⊆ I) and G (L(Λ)[sub(Λ)]) -- 5.3. The coordinate rings and closures of U[sup(+)][sub(J)], (U[sup(J)])[sup(+)] (J ⊆ I) -- 5.4. The closures of G[sub(J)] (J ⊆ I) and G -- 5.5. The closures of N[sub(J)] (J ⊆ I) and N -- 5.6. The openness of the unit group -- 5.7. The Kac-Peterson-Slodowy part of SpecmF [G] -- Chapter 6. The proof of Lie(G) ≅ g -- 6.1. The Lie algebra of T -- 6.2. The Lie algebras of U[sup(+)] and U[sup(-)] -- 6.3. The Lie algebra of G -- Bibliography.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Kac-Moody algebras.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Lie groups.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Algebroids.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Mokler, Claus
Title Analogue of a Reductive Algebraic Monoid Whose Unit Group Is a Kac-Moody Group
Place, publisher, and date of publication Providence : American Mathematical Society,c2005
International Standard Book Number 9780821836484
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Memoirs of the American Mathematical Society
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114083">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114083</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.