Analogue of a Reductive Algebraic Monoid Whose Unit Group Is a Kac-Moody Group. (Record no. 69614)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 03415nam a22004693i 4500 |
001 - CONTROL NUMBER | |
control field | EBC3114083 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240729124559.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2005 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781470404246 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9780821836484 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC3114083 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL3114083 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaPaEBR)ebr11039702 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)922981605 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | QA252.3 -- .M65 2005eb |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 510 s;512/.55 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Mokler, Claus. |
245 10 - TITLE STATEMENT | |
Title | Analogue of a Reductive Algebraic Monoid Whose Unit Group Is a Kac-Moody Group. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Providence : |
Name of producer, publisher, distributor, manufacturer | American Mathematical Society, |
Date of production, publication, distribution, manufacture, or copyright notice | 2005. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2005. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (104 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
490 1# - SERIES STATEMENT | |
Series statement | Memoirs of the American Mathematical Society ; |
Volume/sequential designation | v.174 |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Intro -- Contents -- Introduction -- Contents -- Chapter 1. Preliminaries -- 1.1. Kac-Moody algebras, Kac-Moody groups and the algebra of strongly regular functions -- 1.2. A generalization of affine toric varieties -- Chapter 2. The monoid G and its structure -- 2.1. The face lattice of the Tits cone -- 2.2. The definition of the monoid G -- 2.3. Formulas for computations in G -- 2.4. The unit regularity of G -- 2.5. The Weyl monoid W and the monoids T, N -- 2.6. Some double coset partitions of G -- 2.7. Constructing G from the twin root datum -- 2.8. The action of G on the admissible modules of ο -- 2.9. The submonoids G[sub(J)] (J ⊆ I) -- 2.10. The monoid G for a decomposable matrix A -- Chapter 3. An algebraic geometric setting -- 3.1. Varieties and pnc-varieties -- 3.2. Weak (pnc-)algebraic monoids -- Chapter 4. A generalized Tannaka-Krein reconstruction -- Chapter 5. The proof of G = G and some other theorems -- 5.1. The coordinate rings and closures of T, T[sub(J)] (J ⊆ I), and T[sub(rest)] -- 5.2. The orbits G[sub(J)](L(Λ)[sub(Λ)]) (J ⊆ I) and G (L(Λ)[sub(Λ)]) -- 5.3. The coordinate rings and closures of U[sup(+)][sub(J)], (U[sup(J)])[sup(+)] (J ⊆ I) -- 5.4. The closures of G[sub(J)] (J ⊆ I) and G -- 5.5. The closures of N[sub(J)] (J ⊆ I) and N -- 5.6. The openness of the unit group -- 5.7. The Kac-Peterson-Slodowy part of SpecmF [G] -- Chapter 6. The proof of Lie(G) ≅ g -- 6.1. The Lie algebra of T -- 6.2. The Lie algebras of U[sup(+)] and U[sup(-)] -- 6.3. The Lie algebra of G -- Bibliography. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Kac-Moody algebras. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Lie groups. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Algebroids. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Mokler, Claus |
Title | Analogue of a Reductive Algebraic Monoid Whose Unit Group Is a Kac-Moody Group |
Place, publisher, and date of publication | Providence : American Mathematical Society,c2005 |
International Standard Book Number | 9780821836484 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE | |
Uniform title | Memoirs of the American Mathematical Society |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114083">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114083</a> |
Public note | Click to View |
No items available.