Christoffel Functions and Orthogonal Polynomials for Exponential Weights on (Record no. 69467)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 05329nam a22004933i 4500 |
001 - CONTROL NUMBER | |
control field | EBC3113936 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240729124555.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s1994 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781470401146 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9780821825990 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC3113936 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL3113936 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaPaEBR)ebr10918889 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)891396578 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | QA404.5 -- .L485 1994eb |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 515/.55 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Levin, A.L. |
245 10 - TITLE STATEMENT | |
Title | Christoffel Functions and Orthogonal Polynomials for Exponential Weights on |
-- | -1, 1] |
-- | |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Providence : |
Name of producer, publisher, distributor, manufacturer | American Mathematical Society, |
Date of production, publication, distribution, manufacture, or copyright notice | 1994. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©1994. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (166 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
490 1# - SERIES STATEMENT | |
Series statement | Memoirs of the American Mathematical Society ; |
Volume/sequential designation | v.111 |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Intro -- Table of Contents -- 1. Introduction and Results -- Definition 1.1: The class W -- Theorem 1.2: Christoffel Functions -- Corollary 1.3: Sup-Norms of Christoffel Functions -- Corollary 1.4: Zeros -- Corollary 1.5: Bounds on Orthonormal Polynomials -- Theorem 1.6: Sup-Norm Christoffel Functions -- Theorem 1.7: Restricted Range Inequalities -- Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials -- 2. Some Ideas Behind the Proofs -- I. An Orthogonal Polynomial Angle -- II. The Potential Theory Side: Lower Bounds for λ[sub(n)] -- III. The Potential Theory Side: Upper Bounds for λ[sub(n)] -- IV. The Orthogonal Polynomials Angle: An(x) -- 3. Technical Estimates -- Lemma 3.1: Estimates involving Q -- Lemma 3.2: Estimates involving α[sub(u)] -- Lemma 3.3: More estimates involving α[sub(u)] -- Lemma 3.4: Estimates for Δ[sub(n)](s,t) -- Lemma 3.5: Differences involving Δ[sub(n)](s,t) -- 4. Estimates for the Density Functions μ[sub(n)] -- Lemma 4.1: Old estimates for μ[sub(n)] -- Theorem 4.2: Estimates for μ[sub(n)] on all of (1,1) -- Theorem 4.3: Differences involving μ[sub(n)] -- Proof of Theorem 4.2 -- Proof of Theorem 4.3 (b) -- Proof of Theorem 4.3 (a) -- 5. Majorization Functions and Integral Equations -- Lemma 5.1: Old Potential Theory/Integral Equations -- Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)] -- Theorem 5.3: Estimates for U[sub(n,R)] -- 6. The Proof of Theorem 1.7 -- Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials -- Proof of Theorem 1.7 -- 7. Lower Bounds for λ[sub(n)] -- Theorem 7.1: Lower Bounds for μ[sub(n)] -- Lemma 7.2: Preliminary Lower Bounds -- Proof of Theorem 7.1 -- 8. Discretisation of a Potential: Theorem 1.6 -- Theorem 8.1: One Point Polynomials -- Deduction of Theorem 1.6 -- Theorem 8.2: The Bounds for Γ[sub(n)] -- Deduction of Theorem 8.1 -- Lemma 8.3: Estimates for the discretisation points. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Lemma 8.4: Estimates for S[sub(1)]+[sub(4)] -- Lemma 8.5: Estimates for μ[sub(j)] -- Lemma 8.6: Estimates for τ[sub(j)] -- Lemma 8.7: Estimates for S[sub(21)] -- Lemma 8.8: Lower Bounds for S[sub(2)] -- Lemma 8.9: Upper Bounds for S[sub(2)] -- Lemma 8.10: Bounds for S[sub(3)] -- Proof of Theorem 8.2 -- 9. Upper Bounds for λ[sub(n)]: Theorems 1.2 and Corollary 1.3 -- Lemma 9.1: Preliminary Upper Bounds for μ[sub(n)] -- Proof of Theorem 1.2 -- Proof of Corollary 1.3 -- 10. Zeros: Corollary 1.4 -- Proof of Corollary 1.4 (i) -- Lemma 10.1: Series Equivalent to wω[sup( 2)] -- Proof of a Weaker Form of Corollary 1.4 (ii) -- 11. Bounds on Orthogonal Polynomials: Corollary 1.5 -- Lemma 11.1: An Identity for P'[sub(n)](x[sub(jn)]) -- Lemma 11.2: A Bound for I[sub(1)] -- Lemma 11.3: An Integral Estimate -- Lemma 11.4: An Estimate for I[sub(2)] -- Lemma 11.5: An Estimate for I[sub(3)] -- Theorem 11.6: Implicit Bounds for A[sub(n)] -- Proof of the Upper Bounds for Orthogonal Polynomials -- Lemma 11.7: A Further Integral Estimate -- Theorem 11.8: Good Estimates for A[sub(n)] -- Proof of Corollary 1.5 (iii) -- Lemma 11.9: A Markov-Bernstein Inequality -- Proof of the Lower Bounds for Orthogonal Polynomials -- 12. L[sub(p)] Norms of Orthonormal Polynomials: Theorem 1.8 -- Upper Bounds for L[sub(p)] Norms of Orthonormal Polynomials -- Lemma 12.2: Fundamental Polynomials of Interpolation -- Lower Bounds for L[sub(p)] Norms of Orthonormal Polynomials -- Proof of Corollary 1.4 (ii) -- References. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Orthogonal polynomials. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Christoffel-Darboux formula. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Convergence. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Lubinsky, D.S. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Levin, A.L. |
Title | Christoffel Functions and Orthogonal Polynomials for Exponential Weights on |
-- | -1, 1] |
Place, publisher, and date of publication | Providence : American Mathematical Society,c1994 |
International Standard Book Number | 9780821825990 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE | |
Uniform title | Memoirs of the American Mathematical Society |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113936">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113936</a> |
Public note | Click to View |
No items available.