ORPP logo

Finite Groups Whose 2-Subgroups Are Generated by at Most 4 Elements. (Record no. 69023)

MARC details
000 -LEADER
fixed length control field 03733nam a22004693i 4500
001 - CONTROL NUMBER
control field EBC3113489
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729124544.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s1974 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780821899472
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780821818473
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC3113489
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL3113489
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr10882148
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)884584175
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA177 -- .G67 1974eb
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 510/.8 s;512/.2
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Gorenstein, Daniel.
245 10 - TITLE STATEMENT
Title Finite Groups Whose 2-Subgroups Are Generated by at Most 4 Elements.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 1974.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©1974.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (473 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Memoirs of the American Mathematical Society ;
Volume/sequential designation v.1
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- TABLE OF CONTENTS -- INTRODUCTION -- PART I: SOLVABLE 2-LOCAL SUBGROUPS -- 1. Introduction -- 2. The minimal counterexample -- 3. Odd order groups acting on 2-groups -- 4. The local subgroups of G -- 5. The structure of O[sub(2)(M) -- 6. The case C[sub(R)](B) / 1 -- 7. Proof of Theorem A -- PART II: 2-CONSTRAINED 2-LOCAL SUBGROUPS -- 1. Introduction -- 2. The automorphism groups of certain 2-groups -- 3. Theorem B, the GL(3,2) case -- 4. Theorem B, the A[sub(5)]case -- 5. Theorems C and D, initial reduction -- 6. Theorems C and D, the A[sub(5)] case -- 7. Theorems C and D, the GL(3,2) case -- PART III: NON 2-CONSTRAINED CENTRALIZERS OF INVOLUTIONS -- SOME SPECIAL CASES -- 1. Introduction -- 2. Theorem A -- 3. The Ŝz(8) case -- 4. The Â[sub(n) case -- 5. The M[sub(l2)] case -- 6. Some lemmas -- 7. The SL(4,q), SU(4,q), Sp(4,q) cases -- 8. The direct product case -- 9. The central product case -- PART IV: A CHARACTERIZATION OF THE GROUP D[sup(2)sub(4)](3) -- 1. Introduction -- 2. Preliminary lemmas -- 3. The centralizer of a central involution -- 4. The intersection of W and its conjugates -- 5. The normal four subgroup case -- 6. The cyclic case -- 7. The maximal class case -- PART V: CENTRAL INVOLUTIONS WITH NON 2-CONSTRAINED CENTRALIZERS -- 1. Introduction -- 2. Initial reductions -- 3. Theorem A -- the wreathed case -- 4. Preliminary results -- 5. Maximal elementary abelian 2-subgroups -- 6. Fusion of involutions -- 7. Theorem A -- the dihedral and quasi-dihedral cases -- PART VI: A CHARACTERIZATION OF THE GROUP M[sub(12)] -- 1. Introduction -- 2. 2-groups and their automorphism groups -- 3. Some 2-groups associated with Aut(Z[sub(4)] x Z[sub(4)]) -- 4. Initial reductions -- 5. Elimination of the rank 3 case -- 6. The major reduction -- 7. The non-dihedral case -- 8. The noncyclic case -- 9. The structure of O[sub(2)](M).
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 10. The structure of S.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Finite groups.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Harada, Kaichiro.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Gorenstein, Daniel
Title Finite Groups Whose 2-Subgroups Are Generated by at Most 4 Elements
Place, publisher, and date of publication Providence : American Mathematical Society,c1974
International Standard Book Number 9780821818473
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Memoirs of the American Mathematical Society
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113489">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113489</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.