Energy Recovery. (Record no. 61016)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 11020nam a22004933i 4500 |
001 - CONTROL NUMBER | |
control field | EBC3020749 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240729124141.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2009 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781617284021 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9781607410652 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC3020749 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL3020749 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaPaEBR)ebr10680887 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)662457849 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | TP360 -- .D82 2009eb |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 662/.87 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | DuBois, Edgard. |
245 10 - TITLE STATEMENT | |
Title | Energy Recovery. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | New York : |
Name of producer, publisher, distributor, manufacturer | Nova Science Publishers, Incorporated, |
Date of production, publication, distribution, manufacture, or copyright notice | 2009. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2009. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (343 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Intro -- ENERGY RECOVERY -- CONTENTS -- PREFACE -- BIOGAS RECOVERY FROM LANDFILLS -- ABSTRACT -- I. INTRODUCTION -- II. REGULATORY CONSIDERATIONS -- A. U Landfill Directive 1999/31/EC -- B. RCRA Regulations -- C. CAA Regulations -- D. CWA Regulations -- III. SANITARY AND BIOREACTOR LANDFILLS -- A. Development of Sanitary Landfills -- B. Bioreactor Landfills -- 1. Anaerobic bioreactor landfills -- 2. Aerobic bioreactor landfills -- 3. Aerobic-anaerobic bioreactor landfills -- C. Features Unique to Bioreactor Landfills -- D. Potential Advantages of Bioreactor Landfills -- IV. LANDFILL GAS (LFG) -- A. Landfill Gas Characteristics -- 1. Density and viscosity -- 2. Heat value content -- 3. Non-methane organic compounds -- 4. Water vapor -- 5. Others -- B. Landfill Gas Composition -- C. Landfill Gas Yield -- D. LFG Emission -- 1. LFG Generation -- 1.1. LFG generation mechanisms -- Volatilization -- Biological decomposition -- Stage I. Hydrolysis/aerobic degradation -- Stage II. Hydrolysis and fermentation -- Stage III. Acetogenesis -- Stage IV. Methanogenesis -- Stage V. Oxidation -- 1.2. Factors affecting LFG generation -- 1. Site characteristics -- 2. Waste characteristics -- 3. Age of the waste -- 4. Temperature -- 5. Pressure -- 6. Moisture content and movement -- 7. Atmospheric conditions -- 8. Oxygen concentration -- 9. Hydrogen concentration -- 10. Precipitation -- 11. Density of the waste -- 12. Nutrients and trace metals -- 13. Acidity -- 14. Inhibitors -- 2. LFG Transport -- 2.1. LFG transport mechanisms -- 2.2. Factors affecting LFG transport mechanisms -- E. LFG Production Enhancement Methods -- 1. Leachate recirculation -- 2. pH buffering -- 3. Sludge addition -- 4. Temperature control -- 5. Reduced waste particle size -- 6. Cell design, daily cover and compaction of waste -- 7. Pre-treatment -- V. LANDFILL GAS BEHAVIOUR. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | A. LFG Movement and Migration -- B. Monitoring of LFG -- C. LFG Hazards -- 1. LFG explosion hazard -- 2. LFG asphyxiation hazard -- 3. Landfill odors -- VI. MODELING OF METHANE GAS GENERATIONAND EMISSION FROM LANDFILLS -- A. General -- B. U.S.E.P.A. Model - Landgem -- 1. Model description -- 1.1. Input Parameters -- Methane generation potential (L0) -- Methane generation rate (k) -- C. IPCC-First Order Decay (FOD) Model -- 1. Model description -- 1.1. Input Parameters -- Degradable Organic Carbon ( j DOC ) -- Decay rate/methane generation rate ( j k ) -- D. Regression Models -- F. Other Models -- VII. LANDFILL GAS ENERGY SYSTEMS -- A. LFG Collection System -- Passive venting -- Physical barriers -- Pumping extraction systems -- B. LFG Pretreatment System -- C. LFG Utilization System -- 1. Combustion technologies (Flaring Practices) LFG flaring -- 1.1. Open flame flares -- 1.2. Enclosed flame flares -- 1.3. Other enclosed combustion technologies -- 2. Non-combustion technologies -- 2.1. Energy recovery technologies -- 2.2. Gas to product conversion technologies -- VIII. CASE STUDY: CALGARY BIOCELL PROJECT -- A. Introduction -- B. The Calgary Biocell: Background and Construction Phase -- C. Operation of the Calgary Biocell -- 1. Biocell stage 1: Anaerobic decomposition with gas extraction -- 2. Biocell stage 2: Aerobic decomposition -- 3. Biocell stage 3: Mining for recovery of useful/recyclable products -- D. Summary and Conclusions -- REFERENCES -- NOTATIONS -- LANDFILL GAS: GENERATION. MODELS AND ENERGY RECOVERY -- ABSTRACT -- 1. INTRODUCTION -- 2. LANDFILL GAS CHARACTERISTICSAND GENERATION MECHANISMS -- 3. MATHEMATICAL MODELS FOR LANDFILL GASPRODUCTION PREDICTION -- The Triangular Model -- First Order Decay Model: The Scholl Canyon Equation -- Software Application of First Order Decay Model: Landgem -- Modified First Order Model. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 4. THE ESTIMATION OF K AND L0 IN THE MODELS -- 5. APPLICATION OF THE MODELS TO A STUDY CASE -- 6. ENERGY RECOVERY -- 7. MANAGEMENT OPTION TO IMPROVE ENERGY RECOVERY -- CONCLUSION -- REFERENCES -- ENERGY AND MATERIAL RECOVERY FROMBIOMASS: THE BIOREFINERY APPROACH. CONCEPTOVERVIEW AND ENVIRONMENTAL EVALUATION -- ABSTRACT -- 1. INTRODUCTION -- 2. APPROACHING BIOREFINERY: DEFINITION,CRITERIA AND CHARACTERISTICS -- 2.1. Background and Current Status -- 2.2. Criteria for Biorefinery System -- 2.3. Fossils vs. Biomass as Raw Materials -- 3. OVERVIEW OF BIOREFINERY FEEDSTOCKS,PROCESSES AND PLATFORMS -- 3.1. Biorefinery Feedstocks -- 3.1.1. Sugar crops -- 3.1.2. Starch crops -- 3.1.3. Oil based materials -- 3.1.4. Grasses -- 3.1.5. Lignocellulosic materials -- 3.1.6. Organic residues and others -- 3.2. Technological Processes -- 3.2.1. Thermochemical processes -- 3.2.2. Biochemical processes -- 3.2.3. Mechanical/physical processes -- 3.2.4. Chemical processes -- 3.3. Platforms -- 3.3.1. Biogas -- 3.3.2. Syngas -- 3.3.3. Hydrogen -- 3.3.4. C6 sugars -- 3.3.5. C5 sugars -- 3.3.6. Levulinic acid -- 3.3.7. Furfural -- 3.3.8. Pyrolytic liquid -- 3.3.9. Vegetable oil -- 3.3.10. Organic juice -- 4. LIFE CYCLE ASSESSMENT OF BIOREFINERY SYSTEMS:A CASE STUDY -- 4.1. Introduction to LCA -- 4.2. Goal and Scope Definition -- 4.2.1. Biorefinery: scope and system boundaries -- 4.2.2. Biorefinery material products -- 4.2.3. Biorefinery energy products -- 4.2.4. Fossil reference system -- 4.2.5. Functional unit -- 4.2.6 Allocation -- 4.3. Life Cycle Impact Assessment -- 4.3.1. Results and interpretation -- 4.3.2. Allocation results -- 5. CONCLUSION -- REFERENCES -- PINCH TECHNOLOGY FOR WASTE HEAT RECOVERYAPPLICATIONS IN OIL INDUSTRY -- INTRODUCTION -- TARGETING USING GRAPHICAL METHOD -- Constructing the Composite Curves -- TARGETING USING ALGEBRAIC METHOD. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Information needed -- 1. Constructing Temperature Iinterval Diagram -- 2. Constructing Tables of Exchangeable Heat Loads and Cooling Capacities -- 3. Constructing Thermal Cascade Diagrams -- TARGETING USING MATHEMATICAL PROGRAMMING METHOD -- CONSTRUCTING THE GRAND COMPOSITE CURVE (G.C.C) -- Multiple Utility Targeting/Selection using Grand Composite Curve (GCC) -- Understanding and Applying the Grand Composite Curve -- HEAT EXCHANGERS NETWORK (HEN) SYNTHESIS -- The Pinch Design Method -- HEN DESIGN METHOD -- Four Streams Problem Example -- Start at the Pinch -- The CP(FCp) inequality for individual matches -- The CP(FCp) table -- The "tick-off" heuristic -- Streams Splitting -- PART II. HEAT INTEGRATION APPLICATIONS IN OIL INDUSTRY -- Oil and Gas Separation Plant Process Description -- Heat Integration Application in Oil and Gas Separation Facility -- CONCLUSION -- REFERENCES -- TREATMENT OF SECONDARY SLUDGEFOR ENERGY RECOVERY -- ABSTRACT -- 1. INTRODUCTION -- 2. SECONDARY SLUDGE TREATMENT METHODS -- 2.1. Incineration -- 2.2. Pyrolysis -- 2.3. Gasification -- 2.4. Direct Liquefaction -- 2.5. Supercritical Water Oxidation (SCWO) -- 2.6. Anaerobic Digestion -- 3. DISCUSSION AND COMPARISON OF TREATMENT METHODS -- 4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- ENERGY RECOVERY FROM WASTE: COMPARISONOF DIFFERENT TECHNOLOGY COMBINATIONS -- ABSTRACT -- MSW Characteristics and Pre-treatment -- Combustion with Energy Recovery -- Gasification with Energy Recovery -- Pyrolysis with Energy Recovery -- Anaerobic Digestion -- Comparison of Thermal Processes -- Comparison of Integrated Energy Recovery Systems -- CONCLUSION -- REFERENCES -- ENERGY RECOVERY FROM WASTEINCINERATION: LINKING THE SYSTEMSOF ENERGY AND WASTE MANAGEMENT -- ABSTRACT -- INTRODUCTION -- DEVELOPMENT OF WASTE INCINERATION IN SWEDEN -- Historical Development. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Waste Incineration in Sweden Today -- Waste incineration and district heating -- Waste incineration and combined heat and power production -- Waste and Connection to the Material Market -- CONNECTION BETWEEN COUNTRIES IN THE EUROPEAN UNIONVIA LEGISLATION AND TRADE AND THE IMPACTON THE SWEDISH WASTE INCINCERATION -- European Legislation Affecting Energy and Waste -- European Differences in Waste Management and Use of District Heating -- Impact on Waste Incineration in Sweden of Waste Trade with SomeEuropean Countries -- Impact on Waste Incineration of Trade in Electricity -- DISCUSSION OF TWO POLICY INSTRUMENTS -- Introduction of a Tax on Incinerated Waste in Sweden -- Green Electricity Certificates and Waste Incineration -- MODELS AS DECISION SUPPORT -- Models and How to Handle the Double Function of Waste Incineration -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- EXPERIMENTAL ANALYSIS OF A COMBINEDRECOVERY SYSTEM -- ABSTRACT -- INTRODUCTION -- EVAPORATIVE COOLING SYSTEMS -- HEAT PIPE SYSTEMS -- EXPERIMENTAL INSTALLATION -- EXPERIMENTAL MEASUREMENTS -- SENSIBLE HEAT RECOVERED -- Combined System -- Analysis of Results -- Temperature -- Evaporative cooling system -- Analysis of Results -- Heating and cooling mode analysis -- Heat Pipes System -- Analysis of Results -- Temperature -- LATENT HEAT RECOVERED -- Analysis of Results -- Air Flow -- Temperature -- VxT interaction -- TOTAL HEAT RECOVERED -- Evaporative Cooler -- Analysis of Results -- Airflow Analysis -- Temperature -- SUMMARY -- Sensible Heat -- Latent Heat -- Total Heat -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- ENERGY RECOVERY SYSTEMS FROM INDUSTRIALPLANT WASTE: PLANNING OF AN INDUSTRIAL PARKLOCATED IN THE SOUTH OF ITALY -- ABSTRACT -- INTRODUCTION -- 1. A STRATEGY FOR SUSTAINABLE MANAGEMENTOF INDUSTRIAL PARKS -- 1.1. Environmental Qualification of Industrial Parks. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 1.2. Principles of Industrial Ecology. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Waste products as fuel. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Mercier, Arthur. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | DuBois, Edgard |
Title | Energy Recovery |
Place, publisher, and date of publication | New York : Nova Science Publishers, Incorporated,c2009 |
International Standard Book Number | 9781607410652 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3020749">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3020749</a> |
Public note | Click to View |
No items available.