ORPP logo

Introduction of Intelligent Machine Fault Diagnosis and Prognosis. (Record no. 60241)

MARC details
000 -LEADER
fixed length control field 09245nam a22005293i 4500
001 - CONTROL NUMBER
control field EBC3019391
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729124119.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2008 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781614701118
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781606922637
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC3019391
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL3019391
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr10670956
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)923661039
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TA169.6 -- .Y36 2009eb
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 620/.0044
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Yang, Bo-Suk.
245 10 - TITLE STATEMENT
Title Introduction of Intelligent Machine Fault Diagnosis and Prognosis.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Hauppauge :
Name of producer, publisher, distributor, manufacturer Nova Science Publishers, Incorporated,
Date of production, publication, distribution, manufacture, or copyright notice 2008.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2010.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (363 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- INTRODUCTION OF INTELLIGENT MACHINE FAULT DIAGNOSISAND PROGNOSIS -- CONTENTS -- PREFACE -- ACKNOWLEDGMENTS -- ABOUT THE AUTHORS -- INTRODUCTION -- 1.1. BACKGROUND -- 1.2. MAINTENANCE STRATEGY -- 1.3. DEFINITION OF FAULT DIAGNOSIS AND PROGNOSIS -- 1.4. CONDITION BASED MAINTENANCE SYSTEM ARCHITECTURE -- 1.5. FAULT DIAGNOSIS FRAMEWORK -- 1.6. ROLE OF CONDITION MONITORING, FAULT DIAGNOSIS AND PROGNOSIS -- 1.7. PROBLEMS DURING IMPLEMENTATION -- 1.8. RELATED TECHNIQUES -- 1.9. REFERENCES -- DATA ACQUISITION, PROCESSING AND ANALYSIS -- 2.1. INTRODUCTION -- 2.2. DATA ACQUISITION -- 2.2.1. Selecting A Proper Measure -- 2.2.2. Vibration Transducers -- 1) Proximity Probes -- 2) Velocity Transducers -- 3) Accelerometers -- 4) Key-Phasor -- 2.2.3. Transducer Selection -- 2.2.4. Transducer Mounting -- 1) Stud Mounting -- 2) Cement Mounting -- 3) Wax Mounting -- 4) Adhesive Mounting -- 5) Magnetic Mounting -- 6) Hand-Held -- 2.2.5. Transducer Location (Measuring Point) -- 2.2.6. Frequency Spans -- 2.2.7. Data Display -- 1) Time Waveform -- 2) Spectrum -- 3) Orbit -- 2.3. DATA PROCESSING -- 2.3.1. Data preprocessing -- 1) Wavelet Transform -- Continuous Wavelet Transform (CWT) -- 2) Averaging -- 3) Enveloping -- 4) Cesptrum -- 2.4. DATA ANALYSIS -- 2.4.1. Features in Time Domain -- 1) Cumulants -- 2) Upper and Lower Bound of Histogram -- 4) Auto-Regression Coefficients -- 2.4.2. Features in Frequency Domain -- 1) Fourier Transform -- 2) Spectral Analysis -- 3) Frequency parameter indices -- 4) Higher order spectra (HOS) -- 2.4.3. Features in Time-Frequency Domain -- 1) Short Time Fourier Transform (STFT) -- 2) Wavelet Transform -- 2.5. REFERENCES -- FEATURE EXTRACTION AND CLUSTERING -- 3.1. INTRODUCTION -- 3.2. DEFINITION OF SOME BASIC CONCEPTS -- 3.2.1. Pattern and Feature Vector -- 3.2.2. Class -- 3.3. PARAMETER EVALUATION TECHNIQUE.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 3.4. PRINCIPAL COMPONENT ANALYSIS (PCA) -- 3.5. INDEPENDENT COMPONENT ANALYSIS (ICA) -- 3.6. KERNEL PCA -- 3.7. KERNEL ICA -- 3.8. FISHER DISCRIMINANT ANALYSIS (FDA) -- 3.9. LINEAR DISCRIMINANT ANALYSIS (LDA) -- 3.10. GENERALIZED DISCRIMINANT ANALYSIS (GDA) -- 3.11. CLUSTERING -- 3.11.2 K-Means Clustering -- 3.11.3. Hierarchical Clustering -- 3.12. OTHER TECHNIQUES -- 3.13. REFERENCES -- FEATURE SELECTION -- 4.1. INTRODUCTION -- 4.2. INDIVIDUAL FEATURE EVALUATION (IFE) BASED ON SPACE DISTRIBUTION -- 4.3. CONDITIONAL ENTROPY -- 4.4. BACKWARD FEATURE SELECTION -- 4.5. FORWARD FEATURE SELECTION -- 4.6. BRANCH AND BOUND FEATURE SELECTION -- 4.7. PLUS L-TAKE AWAY R FEATURE SELECTION -- 4.8. FLOATING FORWARD FEATURE SELECTION -- 4.9. DISTANCE EVALUATION TECHNIQUE -- 4.10. TAGUCHI METHOD-BASED FEATURE SELECTION -- 4.11. GENETIC ALGORITHM -- 4.11.1. General concept -- 1) Selection -- 2) Crossover -- 3) Mutation -- 4.11.2. Differences from other Traditional Methods -- 4.11.3. Simple Genetic Algorithm (SGA) -- 4.11.4 Feature Selection Using GA -- 4.12. SUMMARY -- 4.13. REFERENCES -- FAULT CLASSIFICATION ALGORITHMS -- 5.1. INTRODUCTION -- 5.2. LINEAR CLASSIFIER -- 5.2.1. Linear Separation of Finite Set of Vectors -- 5.2.2. Perceptron Algorithm -- 5.2.3 Kozinec's Algorithm -- 5.2.4. Multi-Class Linear Classifier -- 5.3. QUADRATIC CLASSIFIER -- 5.4. BAYESIAN CLASSIFIER -- 5.5. K-NEAREST NEIGHBORS (K-NN) -- 5.6. SELF-ORGANIZING FEATURE MAP (SOFM) NEURAL NETWORK -- 5.7. LEARNING VECTOR QUANTIZATION (LVQ) NEURAL NETWORK -- 5.8. RADIAL BASIS FUNCTION (RBF) NEURAL NETWORK -- 5.9. ART-KOHONEN NEURAL NETWORK (ART-KNN) -- 5.10. SUPPORT VECTOR MACHINES (SVMS) -- 5.10.1. Wavelet SVM -- 5.10.2. Multi-Class Classification -- 5.10.3. Sequential Minimal Optimization (SMO) -- 5.11. DECISION TREE -- 5.11.1. Building Decision Tree -- 5.11.2 Pruning Decision Tree.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 5.12. RANDOM FOREST -- 5.12.1. Random Forest -- 1) CART Methodology -- 2) Tree Building -- 3) Stopping Tree Building -- 5.12.2. Random Forests Algorithm (RF) -- 1) Two Randomized Procedures in RF Tree Building -- 2) Convergence of RF -- 3) Accuracy of RF Depending on Strength and Correlation -- 5.12.3. Genetic Algorithm -- 5.13. ADAPTIVE NEURO-FUZZY INTEGRATED SYSTEM (ANFIS) -- 5.13.1 Classification and Regression Trees (CART) -- 1) Tree Building -- 2) Tree Pruning -- 5.13.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) -- 1) Architecture of ANFIS Based on CART -- 2) Learning Algorithm of ANFIS -- 5.14. CASE STUDIES: FAULT DIAGNOSIS OF INDUCTION MOTORS -- 5.14.1. Wavelet SVM -- 1) Experiment And Data Acquisition -- 2) Feature Calculation -- 3) Feature Extraction and Reduction -- 4) Training and Classification -- 5) Result And Discussion -- 5.14.2. Decision Tree -- 5.14.3 Random Forest -- 1) Data Acquisition and Feature Calculation -- 2) Fault Diagnosis Result and Discussion -- 5.14.4. Cart-Anfis -- 1) Data Acquisition -- 2) Feature Calculation -- 3)Feature Selection and Classification -- 5.15. REFERENCES -- DECISION FUSION ALGORITHMS -- 6.1. INTRODUCTION -- 6.2. FUSION APPLICATION AREAS -- 6.3. FUSION ARCHITECTURES -- 6.3.1. Data-Level Fusion -- 6.3.2. Feature-Level Fusion -- 6.3.3. Decision-Level Fusion -- 6.4. FUSION TECHNIQUES AT DECISION-LEVEL -- 6.4.1. Voting Method -- 6.4.2. Bayesian Belief Fusion -- 6.4.3. Behavior Knowledge Space (BKS) -- 6.4.4. Dempster-Shafer Theory -- 6.4.5. Multi-Agent Fusion -- 6.4.6. Decision Templates (DTS) -- 6.5. CLASSIFIER SELECTION -- 6.5.1 2-Classifier Correlation Analysis -- 6.5.2. Multi-Classifier Correlation Analysis -- 6.6. DECISION FUSION SYSTEM -- 6.6.1. Level 1 To Level 3: Preparation for Decision Fusion -- 6.6.2. Level 4: Data Fusion at Decision Level -- 6.6.3. Level 5: Classifier Selection.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 6.6.4. Level 6: Decision Fusion -- 6.7 FAULTS DIAGNOSIS OF TEST-RIG MOTORS USING FUSION TECHNIQUES -- 6.7.1. Data Acquisition -- 6.7.2. Feature Calculation and Classification -- 6.7.3. Classifiers Selection and Fusion -- 6.7.4.Classifiers Fusion Comparison -- 6.8. FAULTS DIAGNOSIS OF ELEVATOR MOTOR USING FUSION TECHNIQUES -- 6.8.1. Data Acquisition -- 6.8.2. Feature Calculation and Classification -- 6.8.3. Classifiers Fusion -- 6.9. DECISION-LEVEL FUSION DIAGNOSIS USING TRANSIENT CURRENT SIGNAL -- 6.9.1. Experiments and Data Acquisition -- 6.9.2. Signal Preprocessing and Wavelet Transform -- 6.9.3. Features Calculation and Classification -- -- 6.9.4. Fusion Performance Evaluation -- 6.10. REFERENCES -- FAULT PROGNOSIS ALGORITHMS -- 7.1. INTRODUCTION -- 7.2. PROGNOSIS APPROACHES -- 7.2.1. Rule-Based Approaches -- 7.2.2. Fuzzy Logic Approaches -- 7.2.3. Model-Based Approaches -- 1) Physics-Based Model -- 2) System Dynamic Model -- 3) Probabilistic Model -- 7.2.4. Trend-Based Evolutionary Approach -- 7.2.5. Data-Driven Model Based Approach -- 1) Neural Networks -- 2) Support Vector Regression (SVR) -- (1) Linear Support Vector Regression -- 2) Nonlinear Support Vector Regression -- 7.2.6. State Estimator-Based Prognosis -- 7.2.7. Statistical Reliability and Usage-Based Approaches -- 7.2.8. Adaptive Prognosis -- 7.2.9. Data Miningand Automated Rule Extraction -- 7.2.10. Distributed Prognosis System Architecture -- 7.3. APPLICATIONS -- 7.3.1. Bearing Prognosis -- 1) Spall Initiation Model -- 2) Spall Progression Model -- 7.3.2. Gear Prognosis -- 7.3.3. Low-Methane Compressor Prognosis -- 7.3.4. Machine-Tool Prognosis -- 7.4. REFERENCES -- APPENDIX -- INDEX.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Fault location (Engineering) -- Automation.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Automatic test equipment.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Expert systems (Computer science).
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Conscious automata.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Machine learning.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Machinery -- Testing.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Widodo, Achmad.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Yang, Bo-Suk
Title Introduction of Intelligent Machine Fault Diagnosis and Prognosis
Place, publisher, and date of publication Hauppauge : Nova Science Publishers, Incorporated,c2008
International Standard Book Number 9781606922637
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3019391">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3019391</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.