Rational Design of Solar Cells for Efficient Solar Energy Conversion. (Record no. 4868)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 11302nam a22005053i 4500 |
001 - CONTROL NUMBER | |
control field | EBC5507965 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240724113331.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2018 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781119437468 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9781119437406 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC5507965 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL5507965 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaPaEBR)ebr11607546 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)1029102844 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | TK2960 .R385 2018 |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 621.31244 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Pandikumar, Alagarsamy. |
245 10 - TITLE STATEMENT | |
Title | Rational Design of Solar Cells for Efficient Solar Energy Conversion. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Newark : |
Name of producer, publisher, distributor, manufacturer | John Wiley & Sons, Incorporated, |
Date of production, publication, distribution, manufacture, or copyright notice | 2018. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2018. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (399 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Intro -- Title Page -- Copyright Page -- Contents -- Biographies -- List of Contributors -- Preface -- Chapter 1 Metal Nanoparticle Decorated ZnO Nanostructure Based Dye-Sensitized Solar Cells -- 1.1 Introduction -- 1.2 Metal Dressed ZnO Nanostructures as Photoanodes -- 1.2.1 Metal Dressed ZnO Nanoparticles as Photoanodes -- 1.2.2 Metal Dressed ZnO Nanorods as Photoanodes -- 1.2.3 Metal Dressed ZnO Nanoflowers as Photoanodes -- 1.2.4 Metal Dressed ZnO Nanowires as Photoanodes -- 1.2.5 Less Common Metal Dressed ZnO Nanostructures as Photoanodes -- 1.2.6 Comparison of the Performance of Metal Dressed ZnO Nanostructures in DSSCs -- 1.3 Conclusions and Outlook -- References -- Chapter 2 Cosensitization Strategies for Dye-Sensitized Solar Cells -- 2.1 Introduction -- 2.2 Cosensitization -- 2.2.1 Cosensitization of Metal Complexes with Organic Dyes -- 2.2.1.1 Phthalocyanine-based Metal Complexes -- 2.2.1.2 Porphyrin-based Metal Complexes -- 2.2.1.3 Ruthenium-based Metal Complexes -- 2.2.2 Cosensitization of Organic-Organic Dyes -- 2.3 Conclusions -- Acknowledgements -- References -- Chapter 3 Natural Dye-Sensitized Solar Cells - Strategies and Measures -- 3.1 Introduction -- 3.1.1 Mechanism of the Dye-Sensitized Solar Cell Compared with the Z-scheme of Photosynthesis -- 3.2 Components of Dye-sensitized Solar Cell -- 3.2.1 Photoelectrode -- 3.2.2 Dye -- 3.2.3 Liquid Electrolyte -- 3.2.4 Counterelectrode -- 3.3 Fabrication of Natural DSSCs -- 3.3.1 Preparation of TiO2 Nanorods by the Hydrothermal Method -- 3.3.2 Characterization of the Photoelectrode for DSSCs -- 3.3.3 Preparation of Natural Dye -- 3.3.4 Sensitization -- 3.3.5 Arrangement of the DSSC -- 3.4 Efficiency and Stability Enhancement in Natural Dye-Sensitized Solar Cells -- 3.4.1 Effect of Photocatalytic Activity of TiO2 Molecules on the Photostability of Natural Dyes. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 3.4.1.1 Important Points to be Considered for the Preparation of Photoelectrodes -- 3.4.2 Citric Acid - Best Solvent for Extracting Anthocyanins -- 3.4.3. Algal Buffer Layer to Improve Stability of Anthocyanins in DSSCs -- 3.4.3.1 Preparation of Buffer Layers - Sodium Alginate and Spirulina -- 3.4.4 Sodium-doped Nanorods for Enhancing the Natural DSSC Performance -- 3.4.4.1 Preparing Sodium-doped Nanorods as the Photoelectrode -- 3.4.5 Absorber Material for Liquid Electrolytes to Avoid Leakage -- 3.5 Other Strategies and Measures taken in DSSCs Using Natural Dyes -- 3.6 Conclusions -- References -- Chapter 4 Advantages of Polymer Electrolytes for Dye-Sensitized Solar Cells -- 4.1 Why Solar Cells? -- 4.2 Structure and Working Principle of DSSCs with Gel Polymer Electrolytes (GPEs) -- 4.3 Gel Polymer Electrolytes (GPEs) -- 4.3.1 Chitosan (Ch) and Blends -- 4.3.2 Phthaloylchitosan (PhCh) and Blends -- 4.3.3 Poly(Vinyl Alcohol) (PVA) -- 4.3.4 Polyacrylonitrile (PAN) -- 4.3.5 Polyvinylidene Fluoride (PVdF) -- 4.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 5 Advantages of Polymer Electrolytes Towards Dye-sensitized Solar Cells -- 5.1 Introduction -- 5.1.1 Energy Demand -- 5.1.1.1 Generation of Solar Cells -- 5.1.2 Types of Electrolyte Used in Third Generation Solar Cells -- 5.1.2.1 Liquid Electrolytes (LEs) -- 5.1.2.2 Room Temperature Ionic Liquids (RTILs) -- 5.1.2.3 Solid State Hole Transport Materials (SS-HTMs) -- 5.2 Polymer Electrolytes -- 5.2.1 Mechanism of Ion Transport in Polymer Electrolytes -- 5.2.2 Types of Polymer Electrolyte -- 5.2.2.1 Solid Polymer Electrolytes -- 5.2.2.2 Gel Polymer Electrolytes -- 5.2.2.3 Composite Polymer Electrolyte -- 5.3 Dye-sensitized Solar Cells -- 5.3.1 Components and Operational Principle -- 5.3.1.1 Substrate -- 5.3.1.2 Photoelectrode -- 5.3.1.3 Photosensitizer -- 5.3.1.4 Redox Electrolyte. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 5.3.1.5 Counter Electrode -- 5.3.2 Application of Polymer Electrolytes in DSSCs -- 5.3.2.1 Solid-state Dye-Sensitized Solar Cells (SS-DSSCs) -- 5.3.2.2 Quasi-solid-state Dye-Sensitized Solar Cells (QS-DSSC) -- 5.3.2.3 Types of Additives in GPEs -- 5.3.3 Bifacial DSSCs -- 5.4 Quantum Dot Sensitized Solar Cells (QDSSC) -- 5.5 Perovskite-Sensitized Solar Cells (PSSC) -- 5.6 Conclusion -- Acknowledgements -- References -- Chapter 6 Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion -- 6.1 Introduction -- 6.2 Principles of Next Generation Solar Cells -- 6.2.1 Dye‐sensitized Solar Cells -- 6.2.2 Principles of Quantum Dot Sensitized Solar Cells -- 6.2.3 Principles of Perovskite Solar Cells -- 6.3 Platinum-free Counterelectrode Materials -- 6.3.1 Carbon-based Materials for Solar Energy Conversion -- 6.3.2 Metal Nitride and Carbide Materials -- 6.3.3 Metal Sulfide Materials -- 6.3.4 Composite Materials -- 6.3.5 Metal Oxide Materials -- 6.3.6 Polymer Counterelectrodes -- 6.4 Summary and Outlook -- References -- Chapter 7 Design and Fabrication of Carbon‐based Nanostructured Counter Electrode Materials for Dye-sensitized Solar Cells -- 7.1 Photovoltaic Solar Cells - An Overview -- 7.1.1 First Generation Solar Cells -- 7.1.2 Second Generation Solar Cells -- 7.1.3 Third Generation Solar Cells -- 7.1.4 Fourth Generation Solar Cells -- 7.2 Dye-sensitized Solar Cells -- 7.2.1 Major Components of DSSCs -- 7.2.1.1 Transparent Conducting Glass Substrate -- 7.2.1.2 Photoelectrode -- 7.2.1.3 Dye Sensitizer -- 7.2.1.4 Redox Electrolytes -- 7.2.1.5 Counterelectrode -- 7.2.2 Working Mechanism of DSSCs -- 7.3 Carbon-based Nanostructured CE Materials for DSSCs -- 7.4 Conclusions -- References -- Chapter 8 Highly Stable Inverted Organic Solar Cells Based on Novel Interfacial Layers -- 8.1 Introduction. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 8.2 Research Areas in Organic Solar Cells -- 8.3 An Overview of Inverted Organic Solar Cells -- 8.3.1 Transport Layers in Inverted Organic Solar Cells -- 8.3.2 PEDOT:PSS Hole Transport Layer -- 8.3.3 Titanium Oxide Electron Transport Layer -- 8.4 Issues in Inverted Organic Solar Cells and Respective Solutions -- 8.4.1 Wettability Issue of PEDOT:PSS in Inverted Organic Solar Cells -- 8.4.2 Light-soaking Issue of TiOx-based Inverted Organic Solar Cells -- 8.5 Overcoming the Wettability Issue and Light-soaking Issue in Inverted Organic Solar Cells -- 8.5.1 Fluorosurfactant-modified PEDOT:PSS as Hole Transport Layer -- 8.5.2 Fluorinated Titanium Oxide as Electron Transport Layer -- 8.6 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 9 Fabrication of Metal Top Electrode via Solution‐based Printing Technique for Efficient Inverted Organic Solar Cells -- 9.1 Introduction -- 9.2 Organic Photovoltaic Cells -- 9.3 Working Principle -- 9.4 Device Architecture -- 9.4.1 Single Layer or Monolayer Device -- 9.4.2 Planar Heterojunction Device -- 9.4.3 Bulk Heterojunction Device -- 9.4.4 Ordered Bulk Heterojunction Device -- 9.4.5 Inverted Organic Solar Cells -- 9.5 Fabrication Process -- 9.5.1 Hybrid-EHDA Technique -- 9.5.1.1 Flow Rate -- 9.5.1.2 Applied Potential -- 9.5.1.3 Pneumatic Pressure -- 9.5.1.4 Stand-off Distance -- 9.5.1.5 Nozzle Diameter -- 9.5.1.6 Ink Properties -- 9.5.2 Mode of Atomization -- 9.5.2.1 Dripping Mode -- 9.5.2.2 Unstable Spray Mode -- 9.5.2.3 Stable Spray Mode -- 9.6 Fabrication of Inverted Organic Solar Cells -- 9.6.1 Deposition of Zinc Oxide (ZnO) on ITO Substrate -- 9.6.2 Deposition of P3HT:PCBM -- 9.6.3 Deposition of PEDOT:PSS -- 9.6.4 Deposition of Silver as a Top Electrode -- 9.7 Device Morphology -- 9.8 Device Performance -- 9.9 Conclusion -- Acknowledgements -- References. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Chapter 10 Polymer Solar Cells - An Energy Technology for the Future -- 10.1 Introduction -- 10.2 Materials Developments for Bulk Heterojunction Solar Cells -- 10.2.1 Conjugated Polymer-Fullerene Solar Cells -- 10.2.2 Non-Fullerene Polymer Solar Cells -- 10.2.3 All-Polymer Solar Cells -- 10.3 Materials Developments for Molecular Heterojunction Solar Cells -- 10.3.1 Double-cable Polymers -- 10.4 Developments in Device Structures -- 10.4.1 Tandem Solar Cells -- 10.4.2 Inverted Polymer Solar Cells -- 10.5 Conclusions -- Acknowledgements -- References -- Chapter 11 Rational Strategies for Large-area Perovskite Solar Cells: Laboratory Scale to Industrial Technology -- 11.1 Introduction -- 11.2 Perovskite -- 11.3 Perovskite Solar Cells -- 11.3.1 Architecture -- 11.3.1.1 Mesoporous PSCs -- 11.3.1.2 Planar PSCs -- 11.4 Device Processing -- 11.4.1 Solvent Engineering -- 11.4.2 Compositional Engineering -- 11.4.3 Interfacial Engineering -- 11.5 Enhancing the Stability of Devices -- 11.5.1 Deposition Techniques -- 11.5.1.1 Spin Coating -- 11.5.1.2 Blade Coating -- 11.5.1.3 Slot Die Coating -- 11.5.1.4 Screen Printing -- 11.5.1.5 Spray Coating -- 11.5.1.6 Laser Patterning -- 11.5.1.7 Roll-to-Roll Deposition -- 11.5.1.8 Other Large Area Deposition Techniques -- 11.6 Summary -- Acknowledgement -- References -- Chapter 12 Hot Electrons Role in Biomolecule-based Quantum Dot Hybrid Solar Cells -- 12.1 Introduction -- 12.2 Classifications of Solar Cells -- 12.2.1 Inorganic Solar Cells -- 12.2.2 Organic Solar Cells (OSCs) -- 12.2.3 Hybrid Solar Cells -- 12.3 Main Losses in Solar Cells -- 12.3.1 Recombination Loss -- 12.3.2 Contact Losses -- 12.4 Hot Electron Concept in Materials -- 12.5 Methodology -- 12.5.1 Hot Injection Method -- 12.5.1.1 Nucleation and Growth Stages -- 12.5.1.2 Merits of this Method -- 12.6 Material Synthesis -- 12.6.1 CdSe QD Preparation. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 12.6.2 QD-βC Hybrid Formation. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Solar cells-Design and construction. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Direct energy conversion. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Ramaraj, Ramasamy. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Pandikumar, Alagarsamy |
Title | Rational Design of Solar Cells for Efficient Solar Energy Conversion |
Place, publisher, and date of publication | Newark : John Wiley & Sons, Incorporated,c2018 |
International Standard Book Number | 9781119437406 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5507965">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5507965</a> |
Public note | Click to View |
No items available.