Non-Volatile Memories. (Record no. 43933)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 09006nam a22004693i 4500 |
001 - CONTROL NUMBER | |
control field | EBC1880170 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240729123232.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2014 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781118790281 |
Qualifying information | (electronic bk.) |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC1880170 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL1880170 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaPaEBR)ebr10992795 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaONFJC)MIL674939 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)897466493 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | TK7895.M4 -- L33 2014eb |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 621.397 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Lacaze, Pierre-Camille. |
245 10 - TITLE STATEMENT | |
Title | Non-Volatile Memories. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Newark : |
Name of producer, publisher, distributor, manufacturer | John Wiley & Sons, Incorporated, |
Date of production, publication, distribution, manufacture, or copyright notice | 2014. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2014. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (305 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Cover -- Title Page -- Copyright -- Contents -- Acknowledgments -- Preface -- PART 1: Information Storage and the State of the Art of Electronic Memories -- 1: General Issues Related to Data Storage and Analysis Classification of Memories and Related Perspectives -- 1.1. Issues arising from the flow of digital information -- 1.2. Current electronic memories and their classification -- 1.3. Memories of the future -- 2: State of the Art of DRAM, SRAM, Flash, HDD and MRAM Electronic Memories -- 2.1. DRAM volatile memories -- 2.1.1. The operating principle of a MOSFET (metal oxide semiconductor field effect transistor) -- 2.1.2. Operating characteristics of DRAM memories -- 2.2. SRAM memories -- 2.3. Non-volatile memories related to CMOS technology -- 2.3.1. Operational characteristics of a floating gate MOSFET -- 2.3.1.1. How to charge and discharge the floating gate? -- 2.3.1.2. Physical problems related to the storage of electrical charges and their impact on the operation of a floating gate memory -- 2.3.1.2.1. Charge retention -- 2.3.1.2.2. Problems related to writing and electron injection -- 2.3.1.3. Multilevel cells -- 2.3.1.4. The quality of dielectrics: one of the reasons behind the limitation of floating gate memory performances -- 2.3.1.5. The "Achille's heel" of floating gate memories -- 2.3.2. Flash memories -- 2.3.2.1. NOR and NAND Flash memories -- 2.3.2.2. General organization of NAND Flash memories -- 2.3.2.3. Perspectives for Flash memories -- 2.4. Non-volatile magnetic memories (hard disk drives - HDDs and MRAMs) -- 2.4.1. The discovery of giant magneto resistance at the origin of the spread of hard disk drives -- 2.4.1.1. GMR characteristics -- 2.4.2. Spin valves -- 2.4.3. Magnetic tunnel junctions -- 2.4.4. Operational characteristics of a hard disk drive (HDD) -- 2.4.5. Characteristics of a magnetic random access memory (MRAM). |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 2.5. Conclusion -- 3: Evolution of SSD Toward FeRAM, FeFET, CTM and STT-RAM Memories -- 3.1. Evolution of DRAMs toward ferroelectric FeRAMs -- 3.1.1. Characteristics of a ferroelectric material -- 3.1.2. Principle of an FeRAM memory -- 3.1.3. Characteristics of an FeFET memory -- 3.1.3.1. Retention characteristics -- 3.1.3.2. Ferroelectric materials other than oxides? -- 3.2. The evolution of Flash memories towards charge trap memories (CTM) -- 3.3. The evolution of magnetic memories (MRAM) toward spin torque transfer memories (STT-RAM) -- 3.3.1. Nanomagnetism and experimental implications -- 3.3.2. Characteristics of spin torque transfer -- 3.3.3. Recent evolution with use of perpendicular magnetic anisotropic materials -- 3.4. Conclusions -- PART 2: The Emergence of New Concepts: The Inorganic NEMS, PCRAM, ReRAM and Organic Memories -- 4: Volatile and Non-volatile Memories Based on NEMS -- 4.1. Nanoelectromechanical switches with two electrodes -- 4.1.1. NEMS with cantilevers -- 4.1.1.1. Operation and memory effect of an NEMS with a cantilever -- 4.1.1.2. Description of the elaboration technique -- 4.1.2. NEMS with suspended bridge -- 4.1.3. Crossed carbon nanotube networks -- 4.2. NEMS switches with three electrodes -- 4.2.1. Cantilever switch elaborated by lithographic techniques -- 4.2.2. Nanoswitches with carbon nanotubes -- 4.2.2.1. NEMS memory with a carbon nanotube cantilever -- 4.2.2.2. NEMS memories with "vertical" carbon nanotubes (CNTs) -- 4.2.3. NEMS-FET hybrid memories with a mobile floating gate or mobile cantilever -- 4.2.3.1. Mobile floating gate memory -- 4.2.3.2. MEMS memory with a mobile cantilever and a fixed carbon nanotube -- 4.3. Conclusion -- 5: Non-volatile Phase-Change Electronic Memories (PCRAM) -- 5.1. Operation of an electronic phase-change memory -- 5.1.1. Composition and functioning of a GST PCRAM. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 5.1.2. The antinomy between the high resistance of the amorphous state and rapid heating -- 5.2. Comparison of physicochemical characteristics of a few phase-change materials -- 5.3. Key factors for optimized performances of PCM memories -- 5.3.1. Influence of cell geometry on the current Im needed for crystal melting -- 5.3.2. Optimization of phase-change alloy composition to improve performance -- 5.3.2.1. Effect of variations in GST composition (Ge, Sb and Te) -- 5.3.2.2. Doping of GST with elements other than Ge, Sb and Te -- 5.3.3. Influence of nanostructuration of the phase-change material -- 5.3.3.1. Alternating GeTe and Sb2Te3 layers -- 5.3.3.2. Interpretation of structuring effect of GST layer on switching speeds -- 5.3.4. Recent techniques for improvement of amorphization and crystallization rates of phase-change materials -- 5.3.4.1. New procedures for improving crystallization rates without modifying retention properties -- 5.3.4.2. Amorphization without melting induced by electric pulses of a few hundred picoseconds -- 5.3.5. Problems related to interconnection of PCRAM cells in a 3D crossbar-type architecture -- 5.4. Conclusion -- 6: Resistive Memory Systems (RRAM) -- 6.1. Main characteristics of resistive memories -- 6.1.1. Unipolar system -- 6.1.2. Bipolar system -- 6.2. Electrochemical metallization memories -- 6.2.1. Atomic switches -- 6.2.2. Metallization memories with an insulator or a semiconductor -- 6.2.2.1. Cu/SiO2/Pt metallization memory -- 6.2.2.2. Ag/ZnO/Pt memory device -- 6.2.3. Conclusions on metallization memories -- 6.3. Resistive valence change memories (VCM) -- 6.3.1. The first work on resistive memories -- 6.3.2. Resistive valence change memories after the 2000s -- 6.3.3. A perovskite resistive memory (SrZrO3) with better performance than Flash memories -- 6.3.4. Electroforming and resistive switching. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 6.3.4.1. Electroforming process -- 6.3.4.2. Resistive switching mechanisms -- 6.3.5. Hafnium oxide for universal resistive memories? -- 6.4. Conclusion -- 7: Organic and Non-volatile Electronic Memories -- 7.1. Flash-type organic memories -- 7.1.1. Flexible FG-OFET device with metal floating gate -- 7.1.1.1. Floating-gate OFET fabrication and electric specifications -- 7.1.1.2. Elaboration of a pressure sensor -- 7.1.2. Flexible organic FG-OFET entirely elaborated by spin coating and inkjet printing -- 7.1.2.1. Elaboration of an all-solution processable FG-OFET -- 7.1.2.2. Electric characteristics of an all-solution-processed FG-OFET -- 7.1.3. Flexible OFETs with charge-trap gate dielectrics -- 7.1.3.1. Electric characteristics of OFETs based on polymer electrets -- 7.1.3.2. Polymer electret-based OFETs printed on paper -- 7.1.4. OFETs with conductive nanoparticles encapsulated in the gate dielectric -- 7.1.4.1. OFET with gold NPs inserted in the gate dielectric -- 7.1.4.2. Operating characteristics -- 7.1.5. Redox dielectric OFETs -- 7.1.5.1. Making the redox transistor -- 7.1.5.2. Operation of the transistor -- 7.2. Resistive organic memories with two contacts -- 7.2.1. Organic memories based on electrochemical metallization -- 7.2.1.1. M/I/M' devices with a polymer electrolyte -- 7.2.1.2. M/I/M' devices with a conducting polymer -- 7.2.2. Resistive charge-trap organic memories -- 7.2.2.1. Resistive [M/I-m-I/M'] device with "m" as electric charge-trap intermediate layer -- 7.2.2.2. Resistive component M/I/M' with gold metallic NPs -- 7.3. Molecular memories -- 7.4. Conclusion -- Conclusion -- Bibliography -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Index. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Flash memories (Computers). |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Lacroix, Jean-Claude. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Lacaze, Pierre-Camille |
Title | Non-Volatile Memories |
Place, publisher, and date of publication | Newark : John Wiley & Sons, Incorporated,c2014 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=1880170">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=1880170</a> |
Public note | Click to View |
No items available.