ORPP logo

High Performance Computing for Intelligent Medical Systems. (Record no. 36790)

MARC details
000 -LEADER
fixed length control field 11610nam a22005413i 4500
001 - CONTROL NUMBER
control field EBC31253048
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240724115946.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2021 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780750345453
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780750338165
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC31253048
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL31253048
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1262946078
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q335 .H544 2021
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Bajaj, Varun.
245 10 - TITLE STATEMENT
Title High Performance Computing for Intelligent Medical Systems.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Bristol :
Name of producer, publisher, distributor, manufacturer Institute of Physics Publishing,
Date of production, publication, distribution, manufacture, or copyright notice 2021.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2021.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (323 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement IOP Ebooks Series
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Intro -- Preface -- Acknowledgements -- Editors biographies -- Varun Bajaj -- Irshad Ahmad Ansari -- Contributors biographies -- Ms Athena Abrishamchi -- Fatame Bafande -- Hussain Ahmed Choudhury -- Sengul Dogan -- Vandana Dubey -- Fatih Ertam -- Jamal Esmaelpoor -- Harsh Goud -- Kapil Gupta -- Lalita Gupta -- Smith K Khare -- Rajesh Kumar -- Wahengbam Kanan Kumar -- Gaurav Makwana -- Miguel Ángel Mañanas -- Hamid Reza Marateb -- Arezoo Mirshamsi -- Mohammad Reza Mohebbian -- Mohammad Hassan Moradi -- Kishorjit Nongmeikapam -- Saurabh Pal -- Antti Rissanen -- Marjo Rissanen -- Kalle Saastamoinen -- Zahra Momayez Sanat -- Prakash Chandra Sharma -- Mehdi Shirzadi -- Aheibam Dinamani Singh -- Mithlesh Prasad Singh -- Nidul Sinha -- Abdulhamit Subasi -- Turker Tuncer -- Amit Kumar Verma -- Dhyan Chandra Yadav -- Ram Narayan Yadav -- Shadi Zamani -- Chapter 1 Automatic detection of hypertension by flexible analytic wavelet transform using electrocardiogram signals -- 1.1 Introduction -- 1.1.1 Various intervals of ECG -- 1.1.2 Related work -- 1.2 Methodology -- 1.2.1 Dataset -- 1.2.2 Flexible analytic wavelet transform -- 1.2.3 Feature extraction -- 1.2.4 Classification techniques -- 1.2.5 Performance parameters -- 1.3 Results -- 1.4 Conclusion -- References -- Chapter 2 Computational intelligence in surface electromyogram signal classification -- 2.1 Introduction -- 2.2 Computational intelligence in biomedical signal processing -- 2.3 Background -- 2.3.1 Discrete cosine transform -- 2.3.2 Fast Fourier transform -- 2.3.3 Singular value decomposition -- 2.3.4 Ternary pattern -- 2.3.5 Support vector machine -- 2.3.6 Linear discriminant analysis -- 2.3.7 KNN -- 2.3.8 Artificial neural network -- 2.4 Spider network -- 2.4.1 Pre-processing -- 2.4.2 Feature extraction -- 2.4.3 Feature reduction -- 2.4.4 Feature concatenation -- 2.4.5 Classification.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 2.5 Results and discussions -- 2.5.1 Dataset -- 2.5.2 Experimental results -- 2.5.3 Discussion -- 2.6 Conclusions and suggestions -- References -- Chapter 3 Analysis of IoT interventions to solve voice pathologies challenges -- 3.1 Introduction -- 3.1.1 Pathology assessment -- 3.1.2 Internet of things in voice pathology -- 3.2 Electroglottography -- 3.2.1 Quantitative analysis -- 3.3 Voice pathology datasets -- 3.3.1 Voice ICar fEDerico II (VOICED) -- 3.3.2 Massachusetts eye and ear infirmary -- 3.3.3 Saarbruecken Voice Database -- 3.3.4 Arabic voice pathology database -- 3.4 Acoustic speech features with machine learning for voice pathology classification -- 3.4.1 Feature extraction techniques -- 3.4.2 Voice pathology analysis and detection techniques -- 3.5 Discussion and conclusion -- References -- Chapter 4 Deep learning for cuffless blood pressure monitoring -- 4.1 Introduction -- 4.2 Physiological models -- 4.3 Data source -- 4.3.1 Preprocessing procedures -- 4.4 Deep learning models for blood pressure monitoring -- 4.4.1 LSTM model -- 4.4.2 PCA-LSTM model -- 4.4.3 Convolutional neural network model -- 4.4.4 CNN-LSTM model -- 4.5 Discussion -- 4.5.1 Comparison with other methods -- 4.6 Conclusion -- References -- Chapter 5 Reliability of machine learning methods for diagnosis and prognosis during the COVID-19 pandemic: a comprehensive critical review -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 January-March -- 5.2.2 April-June -- 5.2.3 July-September -- 5.2.4 October 2020 to February 2021 -- 5.2.5 Machine learning methods -- 5.2.6 Critical issues -- 5.3 Conclusion and future scope -- References -- Chapter 6 Forecasting confirmed cases of Corona patients in India using regression and Gaussian analysis -- 6.1 Introduction -- 6.2 Regression analysis in machine learning -- 6.3 Related work -- 6.4 Methodology -- 6.4.1 Data description -- 6.5 Results.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 6.6 Discussion -- 6.7 Conclusion -- Acknowledgments -- References -- Chapter 7 A model for advanced patient feedback procedures in diagnostics -- 7.1 Introduction -- 7.2 Focus on diagnostics -- 7.2.1 Diagnostic error as a concept -- 7.2.2 Diagnostic errors in healthcare -- 7.2.3 Common reasons for diagnostic failures -- 7.2.4 Preventing diagnostic errors in cooperation with patients -- 7.3 Diagnostics and safety challenges in healthcare -- 7.3.1 Patient safety and equity challenges -- 7.3.2 Enhanced patient safety with rational cost control policy -- 7.4 Importance of patient feedback in the diagnostics phase -- 7.4.1 Need for timely feedback -- 7.4.2 The role of timely feedback -- 7.5 The challenges of diagnostics-centered clients' feedback -- 7.6 Enhancing technology acceptance in system development -- 7.7 Phases of diagnostics and the requirements for doctors -- 7.7.1 Requirements for competence and compassion -- 7.7.2 Diagnostic process from the view of doctors -- 7.7.3 Diagnostic process from the view of patients -- 7.8 A model for instant patient feedback -- 7.8.1 General principles -- 7.8.2 Structure of the model -- 7.8.3 Patient management with the model -- 7.8.4 Meaning of the fixed format phase of the model-phase 1 -- 7.8.5 Meaning and management of the free format phase-phase 2 -- 7.8.6 Clients' opinions of the feedback delivery system-phase 3 -- 7.9 Client feedback as a translational development challenge -- 7.9.1 Enhancing process synergy in organizations -- 7.9.2 Maturing and validating patient-targeted feedback systems -- 7.10 Conclusion -- References -- Chapter 8 Soft computing techniques for efficient processing of large medical data -- 8.1 Introduction -- 8.2 Understanding the concept: video compression -- 8.3 Image compression standards -- 8.3.1 JPEG -- 8.3.2 JPEG2000 -- 8.3.3 JPEG-LS -- 8.3.4 JPEG-XR -- 8.3.5 H.265.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 8.3.6 Types of coding and frames -- 8.4 Motion estimation and the necessity of it in video coding? -- 8.4.1 Forward and backward motion estimation -- 8.4.2 Block matching concept -- 8.5 What is soft computing: techniques and differences -- 8.6 Standard techniques for motion estimation -- 8.7 Soft computing techniques for motion estimation -- 8.8 Conceptual terms used in different SC techniques -- 8.8.1 Chromosomes and genes -- 8.8.2 Chromosome representation -- 8.8.3 Cross-over -- 8.8.4 Mutation -- 8.8.5 Weighting function and PBME -- 8.9 Some well-established soft computing based BMA -- 8.9.1 Genetic algorithm-BMA -- 8.9.2 Inter-block/inter-frame fuzzy search algorithm -- 8.9.3 Basic block-matching using particle swarm optimization -- 8.9.4 Harmony search block matching algorithm -- 8.9.5 Cat swarm optimization (CSO-BMA) -- 8.9.6 CUCKOO search based BMA (CS-BMA) -- 8.9.7 The ABC-BM algorithm -- 8.9.8 ABC-DE -- 8.9.9 HS-DE based BMA -- 8.9.10 'Deterministically starting-GA' (GADet) -- 8.9.11 Enhanced Grey-wolf optimizer-BMA (EGWO-BMA) -- 8.9.12 Chessboard search pattern strategy -- 8.10 Results and discussion -- Acknowledgment -- References -- Chapter 9 A comparison of Parkinson's disease prediction using ensemble data mining techniques with features selection methods -- 9.1 Introduction -- 9.2 Related work -- 9.3 Methodology -- 9.3.1 Data description -- 9.3.2 Whisker plotting -- 9.3.3 Histogram plotting -- 9.4 Algorithms description -- 9.4.1 Decision tree -- 9.4.2 Naïve Bayes -- 9.4.3 Random forest -- 9.4.4 Extra tree -- 9.4.5 Bagging ensemble method -- 9.4.6 Features selection method in Parkinson's disease -- 9.5 Results -- 9.5.1 Evaluation of result after prediction on Parkinson's dataset -- 9.5.2 Result of features importance methods -- 9.5.3 Chi-square test -- 9.5.4 Extra tree -- 9.5.5 Heat map.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 9.5.6 Evaluation of results after features selection -- 9.6 Discussion -- 9.7 Conclusion -- Acknowledgments -- References -- Chapter 10 A comparative analysis of image enhancement techniques for detection of microcalcification in screening mammogram -- 10.1 Introduction -- 10.2 Image enhancement in spatial domain -- 10.2.1 Histogram modeling -- 10.2.2 Histogram equalization -- 10.2.3 Histogram matching -- 10.2.4 Averaging filter -- 10.2.5 Gaussian filter -- 10.2.6 Median filter -- 10.3 Image enhancement in frequency domain -- 10.3.1 Butterworth filtering -- 10.3.2 Gaussian low-pass filter -- 10.3.3 Homomorphic filtering -- 10.3.4 Discrete wavelet transform -- 10.4 Convolutional neural network -- 10.5 Evaluation criteria -- 10.5.1 Mean square error -- 10.5.2 Peak signal-to-noise ratio -- 10.5.3 SNR -- 10.5.4 Mean -- 10.5.5 Variance -- 10.6 Results and discussion -- 10.7 Conclusion -- References -- Chapter 11 Computational intelligence for eye disease detection -- 11.1 Introduction -- 11.2 Anatomy of the eye -- 11.2.1 The cornea -- 11.2.2 The human retina -- 11.3 Retinal diseases -- 11.3.1 Retinal tear -- 11.3.2 Diabetic retinopathy -- 11.3.3 Macula hole -- 11.3.4 Degeneration of the macula -- 11.3.5 Disorders of the optic nerve -- 11.3.6 Glaucoma -- 11.3.7 Diabetic macular edema -- 11.3.8 Retinopathy of prematurity -- 11.4 History of retinal imaging -- 11.5 Current status of retinal analysis -- 11.5.1 Fundus imaging -- 11.5.2 Optical coherence tomography -- 11.6 Disease specific analysis of retinal images -- 11.6.1 Early detection of retinal disease from fundus photography -- 11.6.2 Early detection of systemic disease from fundus photography -- 11.6.3 3-Dimensional OCT and retinal diseases-image guided therapy -- 11.7 Fundus image analysis -- 11.7.1 Glaucoma detection using retinal imaging -- 11.7.2 Dementia detection using retinal imaging.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 11.7.3 Heart diseases detection using retinal imaging.
520 ## - SUMMARY, ETC.
Summary, etc. The interface of high-performance computing, computational intelligence and medical science creates intelligent medical systems which offer significant improvements in the quality of life and efficacy of clinical treatment. This book reviews advances and applications of high-performance computing for medical applications.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Artificial intelligence.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Artificial intelligence-Medical applications.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element High performance computing.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Ansari, Irshad Ahmad.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Bajaj, Varun
Title High Performance Computing for Intelligent Medical Systems
Place, publisher, and date of publication Bristol : Institute of Physics Publishing,c2021
International Standard Book Number 9780750338165
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title IOP Ebooks Series
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=31253048">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=31253048</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.