ORPP logo

Profit from Your Forecasting Software : (Record no. 367)

MARC details
000 -LEADER
fixed length control field 08723nam a22004813i 4500
001 - CONTROL NUMBER
control field EBC5322518
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240724113057.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2018 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119415985
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119414575
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5322518
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5322518
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11525854
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1027771365
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number HF5438.4 .G66 2018
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658.4030285
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Goodwin, Paul.
245 10 - TITLE STATEMENT
Title Profit from Your Forecasting Software :
Remainder of title A Best Practice Guide for Sales Forecasters.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Newark :
Name of producer, publisher, distributor, manufacturer John Wiley & Sons, Incorporated,
Date of production, publication, distribution, manufacture, or copyright notice 2018.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2018.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (243 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Wiley and SAS Business Series
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Title Page -- Copyright -- Contents -- Acknowledgments -- Prologue -- Chapter 1: Profit from Accurate Forecasting -- 1.1 The Importance of Demand Forecasting -- 1.2 When Is a Forecast Not a Forecast? -- 1.3 Ways of Presenting Forecasts -- 1.3.1 Forecasts as Probability Distributions -- 1.3.2 Point Forecasts -- 1.3.3 Prediction Intervals -- 1.4 The Advantages of Using Dedicated Demand Forecasting Software -- 1.5 Getting Your Data Ready for Forecasting -- 1.6 Trading-Day Adjustments -- 1.7 Overview of the Rest of the Book -- 1.8 Summary of Key Terms -- 1.9 References -- Chapter 2: How Your Software Finds Patterns in Past Demand Data -- 2.1 Introduction -- 2.2 Key Features of Sales Histories -- 2.2.1 An Underlying Trend -- 2.2.2 A Seasonal Pattern -- 2.2.3 Noise -- 2.3 Autocorrelation -- 2.4 Intermittent Demand -- 2.5 Outliers and Special Events -- 2.6 Correlation -- 2.7 Missing Values -- 2.8 Wrap-Up -- 2.9 Summary of Key Terms -- Chapter 3: Understanding Your Software's Bias and Accuracy Measures -- 3.1 Introduction -- 3.2 Fitting and Forecasting -- 3.2.1 Fixed-Origin Evaluations -- 3.2.2 Rolling-Origin Evaluations -- 3.3 Forecast Errors and Bias Measures -- 3.3.1 The Mean Error (ME) -- 3.3.2 The Mean Percentage Error (MPE) -- 3.4 Direct Accuracy Measures -- 3.4.1 The Mean Absolute Error (MAE) -- 3.4.2 The Mean Squared Error (MSE) -- 3.5 Percentage Accuracy Measures -- 3.5.1 The Mean Absolute Percentage Error (MAPE) -- 3.5.2 The Median Absolute Percentage Error (MDAPE) -- 3.5.3 The Symmetric Mean Absolute Percentage Error (SMAPE) -- 3.5.4 The MAD/MEAN Ratio -- 3.5.5 Percentage Error Measures When There Is a Trend or Seasonal Pattern -- 3.6 Relative Accuracy Measures -- 3.6.1 Geometric Mean Relative Absolute Error (GMRAE) -- 3.6.2 The Mean Absolute Scaled Error (MASE) -- 3.6.3 Bayesian Information Criterion (BIC).
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 3.7 Comparing the Different Accuracy Measures -- 3.8 Exception Reporting -- 3.9 Forecast Value-Added Analysis (FVA) -- 3.10 Wrap-Up -- 3.11 Summary of Key Terms -- 3.12 References -- Chapter 4: Curve Fitting and Exponential Smoothing -- 4.1 Introduction -- 4.2 Curve Fitting -- 4.2.1 Common Types of Curve -- 4.2.2 Assessing How Well the Curve Fits the Sales History -- 4.2.3 Strengths and Limitations of Forecasts Based on Curve Fitting -- 4.3 Exponential Smoothing Methods -- 4.3.1 Simple (or Single) Exponential Smoothing -- 4.3.2 Exponential Smoothing When There Is a Trend: Holt's Method -- 4.3.3 The Damped Holt's Method -- 4.3.4 Holt's Method with an Exponential Trend -- 4.3.5 Exponential Smoothing Where There Is a Trend and Seasonal Pattern: The Holt-Winters Method -- 4.3.6 Overview of Exponential Smoothing Methods -- 4.4 Forecasting Intermittent Demand -- 4.5 Wrap-Up -- 4.6 Summary of Key Terms -- Chapter 5: Box-Jenkins ARIMA Models -- 5.1 Introduction -- 5.2 Stationarity -- 5.3 Models of Stationary Time Series: Autoregressive Models -- 5.4 Models of Stationary Time Series: Moving Average Models -- 5.5 Models of Stationary Time Series: Mixed Models -- 5.6 Fitting a Model to a Stationary Time Series -- 5.7 Diagnostic Checks -- 5.7.1 Check 1: Are the Coefficients of the Model Statistically Significant? -- 5.7.2 Check 2: Overfitting-Should We Be Using a More Complex Model? -- 5.7.3 Check 3: Are the Residuals of the Model White Noise? -- 5.7.4 Check 4: Are the Residuals Normally Distributed? -- 5.8 Models of Nonstationary Time Series: Differencing -- 5.9 Should You Include a Constant in Your Model of a Nonstationary Time Series? -- 5.10 What If a Series Is Nonstationary in the Variance? -- 5.11 ARIMA Notation -- 5.12 Seasonal ARIMA Models -- 5.13 Example of Fitting a Seasonal ARIMA Model -- 5.14 Wrap-Up -- 5.15 Summary of Key Terms.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 6: Regression Models -- 6.1 Introduction -- 6.2 Bivariate Regression -- 6.2.1 Should You Drop the Constant? -- 6.2.2 Spurious Regression -- 6.3 Multiple Regression -- 6.3.1 Interpreting Computer Output for Multiple Regression -- 6.3.2 Refitting the Model -- 6.3.3 Multicollinearity -- 6.3.4 Using Dummy Predictor Variables in Your Regression Model -- 6.3.5 Outliers and Influential Observations -- 6.4 Regression Versus Univariate Methods -- 6.5 Dynamic Regression -- 6.6 Wrap-Up -- 6.7 Summary of Key Terms -- 6.8 Appendix: Assumptions of Regression Analysis -- 6.9 Reference -- Chapter 7: Inventory Control, Aggregation, and Hierarchies -- 7.1 Introduction -- 7.2 Identifying Reorder Levels and Safety Stocks -- 7.3 Estimating the Probability Distribution of Demand -- 7.3.1 Using Prediction Intervals to Determine Safety Stocks -- 7.4 What If the Probability Distribution of Demand Is Not Normal? -- 7.4.1 The Log-Normal Distribution -- 7.4.2 Using the Poisson and Negative Binomial Distributions -- 7.5 Temporal Aggregation -- 7.6 Dealing with Product Hierarchies and Reconciling Forecasts -- 7.6.1 Bottom-Up Forecasting -- 7.6.2 Top-Down Forecasting -- 7.6.3 Middle-Out Forecasting -- 7.6.4 Hybrid Methods -- 7.6.5 Issues and Future Developments -- 7.7 Wrap-Up -- 7.8 Summary of Key Terms -- 7.9 References -- Chapter 8: Automation and Choice -- 8.1 Introduction -- 8.2 How Much Past Data Do You Need to Apply Different Forecasting Methods? -- 8.3 Are More Complex Forecasting Methods Likely to Be More Accurate? -- 8.4 When It's Best to Automate Forecasts -- 8.5 The Downside of Automation -- 8.6 Wrap-Up -- 8.7 References -- Chapter 9: Judgmental Interventions: When Are They Appropriate? -- 9.1 Introduction -- 9.2 Psychological Biases That Might Catch You Out -- 9.2.1 Seeing Patterns in Randomness -- 9.2.2 Recency Bias -- 9.2.3 Hindsight Bias.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 9.2.4 Optimism Bias -- 9.3 Restrict Your Interventions -- 9.3.1 Large Adjustments Perform Better -- 9.3.2 Focus Your Efforts Where They'll Count -- 9.4 Making Effective Interventions -- 9.4.1 Divide and Conquer -- 9.4.2 Using Analogies -- 9.4.3 Counteracting Optimism Bias -- 9.4.4 Harnessing the Power of Groups of Managers -- 9.4.5 Record Your Rationale -- 9.5 Combining Judgment and Statistical Forecasts -- 9.6 Wrap-Up -- 9.7 Reference -- Chapter 10: New Product Forecasting -- 10.1 Introduction -- 10.2 Dangers of Using Unstructured Judgment in New Product Forecasting -- 10.3 Forecasting by Analogy -- 10.3.1 Structured Analogies -- 10.3.2 Applying Structured Analogies -- 10.4 The Bass Diffusion Model -- 10.4.1 Innovators and Imitators -- 10.4.2 Estimating a Bass Model -- 10.4.3 Limitations of the Basic Bass Model -- 10.5 Wrap-Up -- 10.6 Summary of Key Terms -- 10.7 References -- Chapter 11: Summary: A Best Practice Blueprint for Using Your Software -- 11.1 Introduction -- 11.2 Desirable Characteristics of Forecasting Software -- 11.2.1 Data Preparation -- 11.2.2 Graphical Displays -- 11.2.3 Method Selection -- 11.2.4 Implementing Methods -- 11.2.5 Hierarchies -- 11.2.6 Forecasting with Probabilities -- 11.2.7 Support for Judgment -- 11.2.8 Presentation of Forecasts -- 11.3 A Blueprint for Best Practice -- 11.4 References -- Index -- EULA.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Sales management-Data processing.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Goodwin, Paul
Title Profit from Your Forecasting Software
Place, publisher, and date of publication Newark : John Wiley & Sons, Incorporated,c2018
International Standard Book Number 9781119414575
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Wiley and SAS Business Series
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5322518">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5322518</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.