ORPP logo

Complex Systems Engineering : (Record no. 34212)

MARC details
000 -LEADER
fixed length control field 07579nam a22004933i 4500
001 - CONTROL NUMBER
control field EBC29191773
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240724115802.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2019 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781624105654
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781624105647
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC29191773
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL29191773
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1128832883
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TL870
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 629.1
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Flumerfelt, Shanon.
245 10 - TITLE STATEMENT
Title Complex Systems Engineering :
Remainder of title Theory and Practice.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Reston :
Name of producer, publisher, distributor, manufacturer American Institute of Aeronautics & Astronautics,
Date of production, publication, distribution, manufacture, or copyright notice 2019.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2019.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (303 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Progress in Astronautics and Aeronautics Series ;
Volume/sequential designation v.256
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Introduction -- Chapter 1: Systems Thinking for Complexity in Aerospace -- 1.1 Abstract -- 1.2 The Reality of Complexity -- 1.3 Engineering from a Different Point of View -- 1.4 So, What is Systems Thinking? -- 1.5 Are We Designing the System Right or Designing the Right System? -- 1.6 Systems Thinking in Systems Engineering Practice -- 1.7 The Influence of Culture on Systems Thinking -- 1.8 Conclusion -- References -- Chapter 2: The Complexity Leverage in Human System Management -- 2.1 Introduction -- 2.2 What are Human Systems? -- 2.3 Human System Management -- 2.4 The Complexity Leverage -- 2.5 Developing Fit or Congruence in Human System Management -- 2.6 Enhancing the System of Systems Through Better Knowledge Management -- 2.7 Conceptualizing Human System Management as Organizational Sensemaking -- 2.8 Diving into the Impact of Behaviorism on Human System Management -- 2.9 The Need for Systems Competency in Human Complexity Management -- 2.10 Conclusion -- References -- Chapter 3: Challenges in Modeling of Stakeholders in Systems Engineering: From End Users to Designers, Individuals to Groups -- 3.1 The Nature of the Problem -- 3.2 The Foundation-Stakeholder Preferences: Communication, Observation, and Representation -- 3.3 The Decision: Modeling Stakeholder Decisions -- 3.4 Stakeholder Interactions: Modeling with Game Theory and Agent-Based Models -- 3.5 Stakeholder Modeling Challenges -- References -- Chapter 4: Incremental and Agile Development of Aerospace Systems: A Comparative Analysis Framework and Source List -- 4.1 Introduction -- 4.2 Descriptive Framework for Analyzing Incremental/Agile Methods -- 4.3 Model-Based Systems Engineering (MBSE) -- 4.4 MBSE Pattern-Based Systems Engineering (PBSE) and the S*Metamodel.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4.5 Agile Systems Engineering Life Cycle Management (ASELCM) S*Pattern -- 4.6 An Optimal Estimation and Control View of Managing Risk and Learning in Incremental and Agile Development -- 4.7 Conclusions and Future Evolution -- 4.8 Appendix Examples of Incremental-Agile Methods in Aerospace -- 4.9 References -- 4.10 Suggested Reading -- Chapter 5: Addressing the Complexity Challenge with Adaptive Verification and Validation -- 5.1 Introduction -- 5.2 The Nature of the Verification Challenge for Complex Systems -- 5.3 The Adaptive Verification and Validation Framework -- 5.4 Life Cycle Governance of Verification and Validation -- 5.5 Iterative Development and Model-Based Engineering in Verification and Validation -- 5.6 Formal Methods in Verification of Complex Aerospace Systems -- 5.7 Recurrent Surveillance -- 5.8 Organizational Partnerships, Conclusions, and an Action Plan for Adaptive V&amp -- V -- References -- Chapter 6: Hopes, Dreams, and Challenges of Digital Nirvana: The State of the Art and the Art of the Possible in Digital Twin and Digital Thread -- 6.1 Introduction -- 6.2 Model Descriptions and Taxonomies -- 6.3 Model-Based Systems Engineering -- 6.4 Expanding Model-Based Thinking with Digital Thread and Digital Twin -- 6.5 Model-Based Development of a Notional Weapon System -- 6.6 Challenges to Full Implementation of Digital Thread and Digital Twin -- 6.7 If Not Nirvana, Then What? -- 6.8 Conclusion -- References -- Chapter 7: Virtually Intelligent Product Systems: Digital and Physical Twins -- 7.1 Abstract -- 7.2 Introduction -- 7.3 Digital Twin -- 7.4 Physical Twin -- 7.5 Digital Twins, Physical Twins, and System Complexity -- 7.6 Digital Twin Manufacturing Use Cases -- 7.7 Digital Twin Service Use Cases -- 7.8 Digital Twin Issues -- 7.9 Conclusion -- References -- Chapter 8: Cybersecurity as a Complex Adaptive Systems Problem.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 8.1 Introduction -- 8.2 Cybersecurity in the Aerospace Industry -- 8.3 Understanding Threats, Risks, and Consequences -- 8.4 Cyber Resilience -- 8.5 Guiding Principles for Dealing with Complexity -- 8.6 Conclusions -- References -- Chapter 9: Use of Concurrent Engineering Centers as a Tool for Life Cycle Governance of Complex System Design, Development, Test, and Operations -- 9.1 The Nature of the Problem -- 9.2 Life Cycle Governance -- 9.3 Concurrent Engineering -- 9.4 CEC State of the Art in Aerospace -- 9.5 Application of Concurrent Engineering to Complex System Governance -- 9.6 Challenges for CASE: Recommendations and Conclusions -- References -- Chapter 10: Learning to Master Complexity Through Aerospace Capstone Design and Senior Technical Electives with Enhanced Complex Aerospace Systems Engineering Content -- 10.1 How Complex Systems Fail -- 10.2 Mastering Complexity -- 10.3 Systems Engineering in Academia -- 10.4 Courses Descriptions and Modifications -- 10.5 Assessment, Outcomes, and Experiences -- 10.6 Conclusions and Lessons Learned -- References -- Chapter 11: Complex Aerospace Systems Engineering Education -- 11.1 Overview -- 11.2 Introduction -- 11.3 System Complexity -- 11.4 Capstone Design -- 11.5 ABET Criteria: Curricula and Design -- 11.6 Capstone Design of Complex Aircraft Systems -- 11.7 Summary and Conclusions -- References -- Index -- Supporting Materials.
520 ## - SUMMARY, ETC.
Summary, etc. Complex Systems Engineering: Theory and Practice represents state-of-the-art thought leadership on system complexity for aerospace and aviation, where breakthrough paradigms and strategies are sorely needed. The costs and consequences of current knowledge and practice gaps are substantial. In short, this problem is caused by several factors: the lack of human capacity to comprehend complexity without machine/autonomation interfaces, the rapid pace of changes in the sector, and the increasing complexity and complicatedness of systems of all types and sizes (occurring by design and by default).
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Aeronautics--Systems engineering.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Schwartz, Katherine.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Mavris, Dimitri.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Flumerfelt, Shanon
Title Complex Systems Engineering
Place, publisher, and date of publication Reston : American Institute of Aeronautics & Astronautics,c2019
International Standard Book Number 9781624105647
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Progress in Astronautics and Aeronautics Series
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=29191773">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=29191773</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.