Wasserman and Whipp's : (Record no. 28811)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 11402nam a22005293i 4500 |
001 - CONTROL NUMBER | |
control field | EBC6743416 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240724115255.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2020 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781975136451 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9781975136437 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC6743416 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL6743416 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)1273979675 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | RC683.5.E94 S548 2021 |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 616.120754 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Sietsema, Kathy E. |
245 10 - TITLE STATEMENT | |
Title | Wasserman and Whipp's : |
Remainder of title | Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. |
250 ## - EDITION STATEMENT | |
Edition statement | 6th ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Philadelphia : |
Name of producer, publisher, distributor, manufacturer | Wolters Kluwer Health, |
Date of production, publication, distribution, manufacture, or copyright notice | 2020. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2021. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (1183 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Intro -- Preface -- Acknowledgments -- Contributors -- 1 Exercise Testing and Interpretation -- WHAT IS CARDIOPULMONARY EXERCISE TESTING? -- CELL RESPIRATION AND BIOENERGETICS -- NORMAL COUPLING OF EXTERNAL TO CELLULAR RESPIRATION -- WHY MEASURE GAS EXCHANGE TO EVALUATE CARDIORESPIRATORY FUNCTION AND CELLULAR RESPIRATION? -- CARDIAC STRESS TESTS AND PULMONARY STRESS TESTS -- PATTERNS OF CHANGE IN EXTERNAL RESPIRATION (VO2 AND VCO2) AS RELATED TO FUNCTION, FITNESS, AND DISEASE -- FACTORS LIMITING EXERCISE -- Fatigue -- Dyspnea -- Pain -- EVIDENCE OF SYSTEMIC DYSFUNCTION UNIQUELY REVEALED BY INTEGRATIVE CARDIOPULMONARY EXERCISE TESTING -- Diagnosis of Exercise Intolerance, Especially Exertional Dyspnea and Myocardial Ischemia -- Cardiopulmonary Exercise Testing and Prognosis in Patients With Known Disorders -- Cardiopulmonary Exercise Testing and Preoperative Assessment -- SUMMARY -- 2 Physiology of Exercise -- SKELETAL MUSCLE: MECHANICAL PROPERTIES AND FIBER TYPES -- BIOENERGETICS -- Sources of High-Energy Phosphate and Cellular Respiration -- Phosphocreatine Breakdown -- Substrate Utilization -- Carbohydrates -- Lipids -- Amino Acids -- OXYGEN COST OF WORK -- VO2 Steady State and Work Efficiency -- VO2 Nonsteady State -- ARTERIAL LACTATE INCREASE -- Arterial Lactate Increase as a Function of Work Rate -- Arterial Lactate Increase as a Function of Time -- Mechanisms of Arterial Lactate Increase -- Increasing Glycolytic Flux and Exercise Intensity -- Sequential Recruitment of Type II Muscle Fibers -- Pyruvate Dehydrogenase Activity -- Change in Cytosolic Redox State Limiting Mitochondrial Proton Shuttles -- Lactate Production and Clearance -- Oxygen Supply and Critical Capillary PO2 -- pH Change and Oxyhemoglobin Dissociation Above the Anaerobic Threshold -- BUFFERING THE EXERCISE-INDUCED LACTIC ACIDOSIS. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | CARDIOVASCULAR RESPONSES TO EXERCISE -- Cardiac Output -- Oxygen Pulse -- Distribution of Peripheral Blood Flow -- Arterial PO2 -- Oxyhemoglobin Dissociation -- Hemoglobin Concentration -- Arterial Oxygen Content -- GAS EXCHANGE KINETICS -- Oxygen Uptake Kinetics -- Moderate Exercise -- Supra-AT Exercise -- Mean Response Time -- Oxygen Deficit -- Oxygen Debt -- Carbon Dioxide Output Kinetics -- Moderate Exercise -- Supra-AT Exercise -- Power-Duration Curve and Critical Power -- VENTILATORY RESPONSES TO EXERCISE -- Arterial and Venous PCO2 and Carbon Dioxide Content -- Ventilatory Determinants -- Carbon Dioxide and H+ Elimination -- Alveolar Ventilation -- Dead Space Ventilation -- Total (or Expired) Ventilation -- Breathing Pattern -- Ventilatory Control -- Moderate Exercise -- Supra-AT Exercise -- SUMMARY -- 3 Measurements During Integrative Cardiopulmonary Exercise Testing -- measurements -- Electrocardiographic Changes With Exercise -- Maximal and Peak Oxygen Uptake -- Oxygen Uptake and Work Rate -- Normal Subjects -- Upward Displacement of VO2 as a Function of Work Rate in Obesity -- Slope of VO2 as a Function of Work Rate (ΔVO2/ΔWR) -- Linearity of VO2 as a Function of Work Rate -- Can VO2 or METs Be Predicted From the Work Rate? -- Cardiac Output and Stroke Volume -- Cardiac Output Measurement -- Indirect Fick Method Using VCO2 and Estimated CVCO2 -- Direct Fick Method -- Noninvasive Cardiac Output and Stroke Volume by the Fick Principle -- Oxygen Pulse and Stroke Volume -- Anaerobic (Lactate, Lactic Acidosis) Threshold -- Methods of Measurement -- V-Slope Method -- Ventilatory Equivalent Method -- Improving Estimation of the Anaerobic Threshold -- False Positives -- Heart Rate-Oxygen Uptake Relationship and Heart Rate Reserve -- Arterial Blood Pressure -- Breathing Reserve -- Expiratory Flow Pattern -- Inspiratory Capacity. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Tests of Uneven VA/Q -- Wasted Ventilation and Dead Space-Tidal Volume Ratio -- Arterial PO2 and Alveolar-Arterial PO2 Difference -- Arterial-End-Tidal PCO2 Difference -- Ventilatory Equivalents as Indices of Uneven VA/Q -- Differentiating Uneven Ventilation From Uneven Perfusion as the Cause of Uneven VA/Q -- Other Measures of Uneven VA/Q -- Arterial Bicarbonate and Acid-Base Response -- Tidal Volume/Inspiratory Capacity Ratio -- Measurements Unique to Constant Work Rate Exercise Testing -- VO2 Response in Phase I -- VO2 Response in Phase II -- VO2 Response Above the Anaerobic Threshold -- The Power-Duration Relationship and Endurance Time -- Noninvasive Estimation of Metabolic Acidosis Buffering -- Carotid Body Contribution to Ventilation -- Detecting Exercise-Induced Bronchospasm -- SUMMARY -- 4 Pathophysiology of Disorders Limiting Exercise -- OBESITY -- PATTERNS OF EXERCISE GAS EXCHANGE COMMON TO CARDIOVASCULAR DISEASES -- VO2 Response to Increasing Work Rate (ΔVO2/ΔWR) in Patients With Cardiovascular Abnormalities -- Why Do Cardiovascular Disorders Impair Gas Transport? -- HEART DISEASES -- Coronary Artery Disease -- Myopathic Heart Disease (Heart Failure) -- Valvular Heart Disease -- Congenital Heart Disease -- PULMONARY VASCULAR DISEASES -- Causes of Increased Ventilation -- Exercise Arterial Hypoxemia -- Effect on Systemic Hemodynamics -- PERIPHERAL ARTERIAL DISEASES -- VENTILATORY DISORDERS -- Obstructive Lung Diseases -- Ventilatory Capacity-Ventilatory Requirement Imbalance -- Oxygen Transport-Oxygen Requirement Imbalance -- Physiological Markers of Inadequate Oxygen Transport -- Restrictive Lung Diseases -- Chest Wall (Respiratory Pump) Disorders -- DEFECTS IN HEMOGLOBIN CONTENT AND QUALITY -- Anemia -- Left-Shifted Oxyhemoglobin Dissociation Curve -- Carboxyhemoglobinemia and Cigarette Smoking -- CHRONIC METABOLIC ACIDOSIS. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | METABOLIC MUSCLE DISORDERS -- Disorders of Carbohydrate Metabolism -- Disorders of Lipid Metabolism -- Disorders of Mitochondrial Electron Transport Chain -- Toxin- or Drug-Induced Muscle Impairment -- Endocrine Disorders -- NONMETABOLIC CAUSES OF EXERCISE LIMITATION AND DYSPNEA -- Anxiety Reactions -- Poor Effort and Manipulated Exercise Performance -- COMBINATIONS OF DEFECTS -- SUMMARY -- 5 Performance of Clinical Cardiopulmonary Exercise Testing -- EXERCISE LABORATORY AND EQUIPMENT -- General Laboratory Environment -- Gas Exchange Measurement -- Mixing Chambers -- Breath-by-Breath Systems -- Measurement of Volume, Flow Rate, and Ventilation -- Breathing Valves, Mouthpieces, and Masks -- Gas Analyzers -- Elevated Inspired Fractional Oxygen Concentration -- Ergometers: Treadmills and Cycles -- Treadmill -- Cycle Ergometer -- Cycle Versus Treadmill -- Work and Work Rate (Power) -- Electrocardiogram and Systemic Blood Pressure -- Exercise Electrocardiogram -- Systemic Blood Pressure -- Oximetry, Blood Sampling, and Arterial Catheters -- Pulse Oximetry -- Single Samples of Arterial Blood by Puncture -- Multiple Samples of Arterial Blood by Catheterization -- Free-Flowing Ear Capillary Blood -- Invasive Cardiopulmonary Exercise Testing With Pulmonary Artery Catheter -- Data Sampling and Computation -- Quality Control, Validation, and Maintenance -- PREPARING FOR THE EXERCISE TEST -- Requesting the Test and Notifying the Patient -- The Patient in the Exercise Laboratory -- Preliminary Tests -- Physician Evaluation -- Equipment Familiarization -- Ending the Exercise -- Arterial Blood Sampling and Use of Catheter -- PERFORMING THE EXERCISE TEST -- Incremental Exercise Test to Symptom-Limited Maximum -- Selecting the Rate of Work Rate Increase -- Resting Measures -- Unloaded Exercise and Cycling Rate -- Incremental Exercise -- Recovery. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Postexercise Questioning and Review -- Incremental Tests -- Constant Work Rate Exercise Tests -- Treadmill Test for Detecting Myocardial Ischemia -- Comment -- Treadmill Tests With Even Increments in Work Rate -- Arm Ergometry -- Critique -- Other Tests Suitable for Fitness or Serial Evaluations -- Harvard Step Test and Modifications -- 600-Yard Run-Walk -- 12-Minute Field Test -- 12-Minute Walk Test -- 6-Minute Walk Test -- Incremental Shuttle Walk Test and Endurance Shuttle Walk Tests -- SUMMARY -- 6 Approaches to Data Summary and Interpretation -- CONSIDERATIONS IN FORMATTING AND SUMMARIZING DATA -- Averaging Breath-by-Breath Data -- Formatting Data for Viewing During and After Testing -- Quantifying Peak Values -- Characterizing Submaximal Exercise Patterns -- ORGANIZING DATA: APPROACH TO REVIEW OF A NINE-PANEL GRAPHICAL DISPLAY -- Data Reflecting Cardiovascular and Metabolic Responses -- Cardiovascular and Metabolic Variables: Summary -- Data Reflecting Ventilation Responses to Exercise -- Ventilatory Variables: Summary -- Data Reflecting Efficiency of Pulmonary Gas Exchange -- Pulmonary Gas Exchange Efficiency: Summary -- Graphing Strategies to Facilitate Data Analysis -- Summarizing Key Variables -- EXAMPLES OF FINDINGS IN THE NINE-PANEL DISPLAY IN SELECTED CARDIORESPIRATORY DISORDERS -- Panel 1: VO2, VCO2, and Work Rate as Related to Time -- Panel 3: Heart Rate and Carbon Dioxide Output as a Function of Oxygen Uptake -- Panel 2: Heart Rate and Oxygen Pulse as a Function of Time -- Panel 9: Tidal Volume as a Function of Exercise Minute Ventilation -- Panel 6: Exercise Minute Ventilation as a Function of Carbon Dioxide Output -- Panel 4: Ventilatory Equivalents for Oxygen and Carbon Dioxide Versus Time -- Panel 7: End-Tidal Oxygen and Carbon Dioxide Tensions Versus Time -- Panel 5: Minute Ventilation as a Function of Time. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Panel 8: Respiratory Exchange Ratio at Rest, Increasing Work Rate Exercise, and Recovery. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Exercise tests. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Stringer, William W. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Sue, Darryl Y. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Ward, Susan. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Rossiter, Harry B. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Porszasz, Janos. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Sietsema, Kathy E. |
Title | Wasserman and Whipp's: Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications |
Place, publisher, and date of publication | Philadelphia : Wolters Kluwer Health,c2020 |
International Standard Book Number | 9781975136437 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6743416">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6743416</a> |
Public note | Click to View |
No items available.