ORPP logo

The the Supervised Learning Workshop : (Record no. 16460)

MARC details
000 -LEADER
fixed length control field 08140nam a22004933i 4500
001 - CONTROL NUMBER
control field EBC6126527
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240724114134.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2020 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781800208322
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781800209046
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC6126527
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL6126527
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1143634009
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q325.5 .B384 2020
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.31
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Bateman, Blaine.
245 14 - TITLE STATEMENT
Title The the Supervised Learning Workshop :
Remainder of title A New, Interactive Approach to Understanding Supervised Learning Algorithms, 2nd Edition.
250 ## - EDITION STATEMENT
Edition statement 2nd ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Birmingham :
Name of producer, publisher, distributor, manufacturer Packt Publishing, Limited,
Date of production, publication, distribution, manufacture, or copyright notice 2020.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2020.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (531 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- FM -- Copyright -- Table of Contents -- Preface -- Chapter 1: Fundamentals -- Introduction -- When to Use Supervised Learning -- Python Packages and Modules -- Loading Data in Pandas -- Exercise 1.01: Loading and Summarizing the Titanic Dataset -- Exercise 1.02: Indexing and Selecting Data -- Exercise 1.03: Advanced Indexing and Selection -- Pandas Methods -- Exercise 1.04: Using the Aggregate Method -- Quantiles -- Lambda Functions -- Exercise 1.05: Creating Lambda Functions -- Data Quality Considerations -- Managing Missing Data -- Class Imbalance -- Low Sample Size -- Activity 1.01: Implementing Pandas Functions -- Summary -- Chapter 2: Exploratory Data Analysis and Visualization -- Introduction -- Exploratory Data Analysis (EDA) -- Summary Statistics and Central Values -- Exercise 2.01: Summarizing the Statistics of Our Dataset -- Missing Values -- Finding Missing Values -- Exercise 2.02: Visualizing Missing Values -- Imputation Strategies for Missing Values -- Exercise 2.03: Performing Imputation Using Pandas -- Exercise 2.04: Performing Imputation Using Scikit-Learn -- Exercise 2.05: Performing Imputation Using Inferred Values -- Activity 2.01: Summary Statistics and Missing Values -- Distribution of Values -- Target Variable -- Exercise 2.06: Plotting a Bar Chart -- Categorical Data -- Exercise 2.07: Identifying Data Types for Categorical Variables -- Exercise 2.08: Calculating Category Value Counts -- Exercise 2.09: Plotting a Pie Chart -- Continuous Data -- Skewness -- Kurtosis -- Exercise 2.10: Plotting a Histogram -- Exercise 2.11: Computing Skew and Kurtosis -- Activity 2.02: Representing the Distribution of Values Visually -- Relationships within the Data -- Relationship between Two Continuous Variables -- Pearson's Coefficient of Correlation -- Exercise 2.12: Plotting a Scatter Plot.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Exercise 2.13: Plotting a Correlation Heatmap -- Using Pairplots -- Exercise 2.14: Implementing a Pairplot -- Relationship between a Continuous and a Categorical Variable -- Exercise 2.15: Plotting a Bar Chart -- Exercise 2.16: Visualizing a Box Plot -- Relationship Between Two Categorical Variables -- Exercise 2.17: Plotting a Stacked Bar Chart -- Activity 2.03: Relationships within the Data -- Summary -- Chapter 3: Linear Regression -- Introduction -- Regression and Classification Problems -- The Machine Learning Workflow -- Business Understanding -- Data Understanding -- Data Preparation -- Modeling -- Evaluation -- Deployment -- Exercise 3.01: Plotting Data with a Moving Average -- Activity 3.01: Plotting Data with a Moving Average -- Linear Regression -- Least Squares Method -- The Scikit-Learn Model API -- Exercise 3.02: Fitting a Linear Model Using the Least Squares Method -- Activity 3.02: Linear Regression Using the Least Squares Method -- Linear Regression with Categorical Variables -- Exercise 3.03: Introducing Dummy Variables -- Activity 3.03: Dummy Variables -- Polynomial Models with Linear Regression -- Exercise 3.04: Polynomial Models with Linear Regression -- Activity 3.04: Feature Engineering with Linear Regression -- Generic Model Training -- Gradient Descent -- Exercise 3.05: Linear Regression with Gradient Descent -- Exercise 3.06: Optimizing Gradient Descent -- Activity 3.05: Gradient Descent -- Multiple Linear Regression -- Exercise 3.07: Multiple Linear Regression -- Summary -- Chapter 4: Autoregression -- Introduction -- Autoregression Models -- Exercise 4.01: Creating an Autoregression Model -- Activity 4.01: Autoregression Model Based on Periodic Data -- Summary -- Chapter 5: Classification Techniques -- Introduction -- Ordinary Least Squares as a Classifier -- Exercise 5.01: Ordinary Least Squares as a Classifier.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Logistic Regression -- Exercise 5.02: Logistic Regression as a Classifier - Binary Classifier -- Exercise 5.03: Logistic Regression - Multiclass Classifier -- Activity 5.01: Ordinary Least Squares Classifier - Binary Classifier -- Select K Best Feature Selection -- Exercise 5.04: Breast Cancer Diagnosis Classification Using Logistic Regression -- Classification Using K-Nearest Neighbors -- Exercise 5.05: KNN Classification -- Exercise 5.06: Visualizing KNN Boundaries -- Activity 5.02: KNN Multiclass Classifier -- Classification Using Decision Trees -- Exercise 5.07: ID3 Classification -- Classification and Regression Tree -- Exercise 5.08: Breast Cancer Diagnosis Classification Using a CART Decision Tree -- Activity 5.03: Binary Classification Using a CART Decision Tree -- Artificial Neural Networks -- Exercise 5.09: Neural Networks - Multiclass Classifier -- Activity 5.04: Breast Cancer Diagnosis Classification Using Artificial Neural Networks -- Summary -- Chapter 6: Ensemble Modeling -- Introduction -- One-Hot Encoding -- Exercise 6.01: Importing Modules and Preparing the Dataset -- Overfitting and Underfitting -- Underfitting -- Overfitting -- Overcoming the Problem of Underfitting and Overfitting -- Bagging -- Bootstrapping -- Exercise 6.02: Using the Bagging Classifier -- Random Forest -- Exercise 6.03: Building the Ensemble Model Using Random Forest -- Boosting -- Adaptive Boosting -- Exercise 6.04: Implementing Adaptive Boosting -- Gradient Boosting -- Exercise 6.05: Implementing GradientBoostingClassifier to Build an Ensemble Model -- Stacking -- Exercise 6.06: Building a Stacked Model -- Activity 6.01: Stacking with Standalone and Ensemble Algorithms -- Summary -- Chapter 7: Model Evaluation -- Introduction -- Importing the Modules and Preparing Our Dataset -- Evaluation Metrics -- Regression Metrics.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Exercise 7.01: Calculating Regression Metrics -- Classification Metrics -- Numerical Metrics -- Curve Plots -- Exercise 7.02: Calculating Classification Metrics -- Splitting a Dataset -- Hold-Out Data -- K-Fold Cross-Validation -- Sampling -- Exercise 7.03: Performing K-Fold Cross-Validation with Stratified Sampling -- Performance Improvement Tactics -- Variation in Train and Test Errors -- Learning Curve -- Validation Curve -- Hyperparameter Tuning -- Exercise 7.04: Hyperparameter Tuning with Random Search -- Feature Importance -- Exercise 7.05: Feature Importance Using Random Forest -- Activity 7.01: Final Test Project -- Summary -- Appendix -- Index.
520 ## - SUMMARY, ETC.
Summary, etc. Cut through the noise and get real results with a step-by-step approach to understanding supervised learning algorithms.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Machine learning.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Jha, Ashish Ranjan.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Johnston, Benjamin.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Mathur, Ishita.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Bateman, Blaine
Title The the Supervised Learning Workshop
Place, publisher, and date of publication Birmingham : Packt Publishing, Limited,c2020
International Standard Book Number 9781800209046
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6126527">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6126527</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.