Nanomaterials for Electrochemical Energy Storage Devices. (Record no. 14177)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 11041nam a22004693i 4500 |
001 - CONTROL NUMBER | |
control field | EBC5945650 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240724114017.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2019 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781119510048 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9781119510031 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC5945650 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL5945650 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)1124601464 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | TJ165 .N366 2020 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Roy, Poulomi. |
245 10 - TITLE STATEMENT | |
Title | Nanomaterials for Electrochemical Energy Storage Devices. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Newark : |
Name of producer, publisher, distributor, manufacturer | John Wiley & Sons, Incorporated, |
Date of production, publication, distribution, manufacture, or copyright notice | 2019. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2020. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (661 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: General Introduction to Battery and Supercapacitor, Fundamental Physics Characterization Techniques -- 1 Electrochemistry of Rechargeable Batteries Beyond Lithium-Based Systems -- 1.1 Lithium-Based Batteries -- 1.1.1 Lithium Primary Batteries -- 1.1.2 Lithium Metal-Based Secondary Batteries -- 1.1.3 Polymer Electrolyte-Based Lithium Batteries -- 1.1.4 Lithium-Ion Batteries -- 1.1.5 Advances in Li-Ion Batteries -- 1.1.6 Beyond Lithium-Based Systems -- 1.2 Cathodes for Na-Ion Batteries -- 1.2.1 Transition Metal Oxides -- 1.2.1.1 Single Metal Oxides -- 1.2.1.2 Multi-Metal Oxides -- 1.2.2 Polyanionic Compounds -- 1.2.3 Fluorides -- 1.2.4 Metal Hexacyanometalates -- 1.2.5 Organic Compounds -- 1.3 Anodes for Na-Ion Batteries -- 1.3.1 Carbon-Based Electrodes -- 1.3.2 Alloy Electrodes -- 1.3.3 Phosphorous, Phosphides, and Nitrides -- 1.3.4 Sulfides and Selenides -- 1.3.5 Phosphates -- 1.3.6 Organic Materials -- 1.3.7 Oxides -- 1.3.8 Sodium-Sulfur Batteries -- 1.3.9 Na-Air Batteries -- 1.4 Potassium Batteries -- 1.4.1 Potassium-Ion Batteries -- 1.4.1.1 Electrolytes -- 1.4.1.2 Cathode Materials -- 1.4.1.3 Anode Materials -- 1.4.2 Potassium-Sulfur Batteries -- 1.4.3 Potassium-Air Batteries -- 1.5 Mg-Based Rechargeable Batteries -- 1.6 Conclusions -- References -- 2 Li-Ion Battery Materials: Understanding From Computational View-Point -- 2.1 Cathode -- 2.1.1 Cluster Expansion -- 2.1.1.1 LiTi2O4 -- 2.1.1.2 LiTiS2 -- 2.1.1.3 LiMn2O4 -- 2.1.1.4 LixCoO2 -- 2.1.1.5 Li(Ni0.5Mn0.5)O2 -- 2.1.2 Phase Stability with Gas-Phase Evolution -- 2.1.3 Solid State Diffusion -- 2.1.3.1 LiTi2O4 -- 2.1.3.2 LiTi2S4 -- 2.1.3.3 LiFePO4 -- 2.1.3.4 LiCoO2 -- 2.1.3.5 Lithium Mobility in Layered Transition Metal Oxides -- 2.1.4 Prediction of New Materials and Combinatorial Chemistry -- 2.1.4.1 Phosphates. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 2.1.4.2 Metal Mixing in Olivines -- 2.2 Anode -- 2.2.1 Phase Transitions in Graphite -- 2.2.2 Fracture in Graphite -- 2.2.3 Diffusion in Graphene -- 2.2.4 Lithiation of Silicon Anodes -- 2.3 Electrolyte -- 2.3.1 Solid Electrolyte Interphase -- 2.3.2 Cathode Side Effects of Electrolyte -- 2.3.3 Solid State Electrolytes -- 2.3.3.1 LGPS Family -- 2.3.3.2 Diffusion in Solid Electrolytes - Case of LGPS -- 2.4 Conclusions -- Acknowledgment -- References -- Part 2: Battery: Anode, Cathode and Non-Li-Ion Batteries -- 3 Nanostructured Anode Materials for Batteries (Lithium Ion, Ni-MH, Lead-Acid, and Thermal Batteries -- 3.1 Introduction -- 3.2 Li-Ion Batteries -- 3.2.1 Electrochemistry of Lithium Ion Batteries -- 3.2.2 Compatibility of Electrode Materials with the Electrolyte -- 3.2.3 Anode Materials for LIBs -- 3.2.3.1 Lithium Metal -- 3.2.3.2 Intercalation/De-Intercalation Materials -- 3.2.3.3 Alloying/De-Alloying Materials -- 3.2.3.4 Conversion Type Anode Materials -- 3.3 Nickel Metal Hydride Batteries -- 3.3.1 Mechanism of Ni-MH Battery Operation -- 3.3.2 Anode Materials -- 3.3.2.1 Rare Earth-Based AB5 Alloys -- 3.3.2.2 Ti and Zr-Based AB2 Type Alloys -- 3.3.2.3 Mg Based Alloys -- 3.3.2.4 Rare Earth-Mg-Ni-Based Superlattice Alloys -- 3.3.2.5 Ti-V-Based Multicomponent Multiphase Alloys -- 3.4 Lead-Acid Batteries -- 3.4.1 Operating Principle -- 3.4.2 Negative Electrodes of Lead-Acid Batteries -- 3.4.2.1 Preparation of Negative Electrode -- 3.4.2.2 Sulfation -- 3.5 Thermal Batteries -- 3.5.1 Anode Materials for Thermal Batteries -- 3.5.1.1 Ca-Based Anodes -- 3.5.1.2 Mg and Al-Based Anodes -- 3.5.1.3 Li Anode -- 3.5.1.4 Li-Al Anodes -- 3.5.1.5 Li-Si Anode -- References -- 4 Nanostructured Cathode Materials for Li-/Na-Ion Aqueous and Non-Aqueous Batteries -- 4.1 Introduction -- 4.1.1 Li+ vs. Na+ ion Batteries -- 4.1.2 Aqueous vs. Non-Aqueous Electrolyte. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 4.2 Background of Cathode Materials -- 4.3 Important Types of Cathode (Class) with Different Electrolytes -- 4.3.1 Li-ion based Nano Cathodes with Aqueous Electrolyte -- 4.3.2 Li-ion based Nano Cathodes with Non-Aqueous Electrolyte -- 4.3.3 Na+ ion based Nano Cathodes with Aqueous Electrolyte -- 4.3.4 Na+ ion based Nano Cathodes with Non-Aqueous Electrolyte -- 4.4 Methods to Prepare Nanostructured Cathodes -- 4.4.1 Solid-State Protocols -- 4.4.2 Sol-Gel Synthesis -- 4.4.3 Combustion Method -- 4.4.4 Hydrothermal Route -- 4.5 Future Aspects -- References -- 5 Polymer-Assisted Chemical Solution Method to Metal Oxide Nanoparticles for Lithium-Ion Batteries -- 5.1 Introduction -- 5.2 Carbon-Based Composites -- 5.3 Polymer-Assisted Chemical Solution Method -- 5.4 Oxygen Deficiency -- 5.5 Summary and Future Perspectives -- References -- 6 Li-Air: Current Scenario and Its Future -- 6.1 Introduction: Why Lithium-Air Batteries? -- 6.2 General Characteristics -- 6.2.1 Types of Lithium-Air Batteries -- 6.3 Chemistry and Mechanism -- 6.3.1 Oxygen Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and the Catalysts -- 6.4 Critical Challenges -- 6.4.1 Electrolytes -- 6.4.2 Decomposition of Electrolyte During Discharge -- 6.4.3 Passivation and Blockage of Oxygen Diffusion -- 6.4.4 Large Polarization -- 6.4.5 Lithium Dendrite Formation -- 6.4.6 Electrocatalysis -- 6.4.7 Rate Capability -- 6.4.8 Energy and Power Density -- 6.4.9 Volume Changes -- 6.5 Non-Aqueous Li/Air Systems -- 6.5.1 Electrochemistry of Oxygen Reduction and Oxidation in Non-Aqueous System -- 6.5.2 Technical Challenges in NLAS -- 6.5.2.1 Designing of Air Cathode/Oxygen Transport -- 6.5.2.2 Effective Loading of Catalysts -- 6.5.2.3 Slow Kinetics of Oxygen Reactions/Deposition of Solid Insulating Products -- 6.5.2.4 Decomposition of Non-Aqueous Electrolytes/Effect of Possible Side Reactions. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 6.5.2.5 Lithium Dendrite Formation and Side Reactions of Li with H2O and Air -- 6.5.3 Electrocatalysts for NLAS -- 6.5.3.1 Carbon Based Materials -- 6.5.3.2 Metal and/or Metal Oxides -- 6.5.3.3 Composite Materials -- 6.5.3.4 Other Cathode Materials -- 6.5.4 Electrolytes Deployed in Non-Aqueous Li-Air Cells -- 6.5.4.1 Alkyl Carbonates -- 6.5.4.2 Esters -- 6.5.4.3 Ethers -- 6.5.4.4 Nitriles -- 6.5.4.5 Amides -- 6.5.4.6 DMSO -- 6.5.4.7 Sulfones -- 6.5.4.8 Ionic Liquids -- 6.5.5 Morphology of the Deposited Products -- 6.6 Aqueous Lithium-Air System -- 6.6.1 Approaches for the Formation of Water Stable Lithium Metal -- 6.6.1.1 Solid Electrolyte -- 6.6.1.2 Stability of Solid Electrolyte-Why Do We Need Buffer Layer? -- 6.6.1.3 Buffer Layer -- 6.6.2 Catholytes -- 6.6.2.1 Acidic Catholyte -- 6.6.2.2 Alkaline Catholyte -- 6.6.3 Catalysts for Acidic and Alkaline System -- 6.6.4 Managing the Precipitation of LiOH.H2O -- 6.6.5 Hybrid Lithium-Air Battery -- 6.7 Applications -- 6.8 Future of Lithium-Air Systems -- References -- 7 Sodium-Ion Battery Anode Stabilization -- 7.1 Introduction -- 7.2 History of NIB -- 7.3 Operational Principle -- 7.4 Types of Storage Mechanisms -- 7.5 Issues and Challenges in a NIB -- 7.6 Brief Updates on Cathode and Anode Materials Research -- 7.6.1 Cathode Materials -- 7.6.1.1 Classification of Layered Structures -- 7.6.1.2 O3-Type Layered NaFeO2 -- 7.6.1.3 O3-, P3-, and P2-Type NaxCoO2 -- 7.6.1.4 Sodium Vanadium Phosphate, Na3V2(PO4)3 -- 7.6.1.5 Emerging Cathodes -- 7.6.2 Anode Materials -- 7.6.2.1 Carbon-Based Systems -- 7.6.2.2 Ti-Based Oxide Anodes -- 7.6.2.3 Alloy Anodes -- 7.6.3 Room-Temperature Sodium-Sulfur (RT Na-S) Battery -- 7.6.4 Electrolyte Modification -- 7.7 Problems in a NIB on Anode Stabilization -- 7.7.1 Problems with Conductive Additive -- 7.7.2 Cyclic Voltammetry Study with Conductive Additive. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 7.7.3 Ex Situ SEM Studies -- 7.7.4 Solving the Conductive Carbon and Electrolyte Interface -- 7.8 Few Solutions for Future -- 7.8.1 In Situ Raman Mapping -- 7.8.2 In Situ FTIR -- 7.8.3 In Situ Synchrotron XRD Coupled with DFT Analysis -- 7.8.4 SIMS-TOF -- 7.8.5 In Situ TEM Coupled with DFT Analysis -- 7.8.6 STEM-HAADF and EELS -- 7.8.7 Time-Lapse Tomography of Volume Expansion -- 7.9 Perception -- References -- 8 Polymer-Based Separators for Lithium-Ion Batteries -- 8.1 Introduction -- 8.2 Polymer Types and Characteristics -- 8.3 Separator Types -- 8.3.1 Solvent Casting -- 8.3.2 Electrospun Separator Membranes -- 8.3.3 Surface Modification -- 8.3.4 Coating Process -- 8.3.5 Natural and Biopolymers -- 8.4 Summary and Outlook -- Acknowledgments -- List of Symbols and Abbreviations -- References -- Part 3: Supercapacitor: Pseudocapacitor, EDLC -- 9 Nanostructured Carbon-Based Electrodes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Scope of the Chapter -- 9.3 Charge Storage Mechanism of Carbonaceous Materials -- 9.4 Nanostructured Carbonaceous Materials -- 9.4.1 Activated Carbon -- 9.4.1.1 Activated Carbon as Supercapacitor Electrode -- 9.4.1.2 Doping of Activated Carbon as Supercapacitor Electrode -- 9.4.2 Graphene -- 9.4.2.1 Graphene as Supercapacitor Electrode -- 9.4.3 Carbon Nano Tube (CNT) -- 9.4.3.1 CNT Supercapacitor -- 9.4.3.2 Functionalized CNT Supercapacitor -- 9.5 Nanostructured Carbon-Based Supercapacitor Device -- 9.5.1 Carbon-Based Redox Electrode in ASC Device -- 9.5.2 Carbon-Based Negative (EDLC) Electrode in ASC Device -- 9.5.3 Different Carbon-Based ASC Device -- 9.5.4 Carbon-Based Printed Supercapacitor Device -- 9.6 Conclusions -- References -- 10 Nanostructured Metal Oxide, Hydroxide, and Chalcogenide for Supercapacitor Applications -- 10.1 Introduction -- 10.2 Materials Architecture and Electrode Designing. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 10.3 Materials. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Energy storage. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Srivastava, S. K. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Roy, Poulomi |
Title | Nanomaterials for Electrochemical Energy Storage Devices |
Place, publisher, and date of publication | Newark : John Wiley & Sons, Incorporated,c2019 |
International Standard Book Number | 9781119510031 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5945650">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5945650</a> |
Public note | Click to View |
No items available.