ORPP logo

Hypercontractivity in Group von Neumann Algebras. (Record no. 131795)

MARC details
000 -LEADER
fixed length control field 03507nam a22004933i 4500
001 - CONTROL NUMBER
control field EBC5110283
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729131535.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2017 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781470441333
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781470425654
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5110283
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5110283
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11491785
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1005658258
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA326 .H974 2017
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 512.556
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Junge, Marius.
245 10 - TITLE STATEMENT
Title Hypercontractivity in Group von Neumann Algebras.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 2017.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2017.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (102 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Memoirs of the American Mathematical Society ;
Volume/sequential designation v.249
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Title page -- Introduction -- Chapter 1. The combinatorial method -- 1.1. Notation -- 1.2. Aim of the method -- 1.3. Admissible lengths -- 1.4. Completing squares I -- 1.5. A decomposition of ᵤ( ) -- 1.6. Completing squares II -- 1.7. Analysis of both approaches -- 1.8. Λ-estimates -- 1.9. Δ-estimates -- 1.10. Strategy -- Chapter 2. Optimal time estimates -- 2.1. Free groups -- 2.2. Triangular groups -- 2.3. Finite cyclic groups -- 2.4. Comments -- Chapter 3. Poisson-like lengths -- 3.1. Proof of Theorem B -- 3.2. Behavior of the constant (\G, ) -- 3.3. Examples of Poisson-like lengths -- 3.4. Ultracontractivity -- Appendix A. Logarithmic Sobolev inequalities -- Appendix B. The word length in ℤ_{ } -- Appendix C. Numerical analysis -- C.1. Estimates for free groups -- C.2. Estimates for triangular groups -- C.3. Estimates for finite cyclic groups -- Appendix D. Technical inequalities -- D.0. Positivity test for polynomials -- D.1. Technical inequalities for free groups -- D.2. Technical inequalities for triangular groups -- D.3. Technical inequalities for finite cyclic groups -- D.4. Proofs -- Bibliography -- Back Cover.
520 ## - SUMMARY, ETC.
Summary, etc. In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \to L_q inequalities with respect to the Markov process given by the word length and with q an even integer. Interpolation and differentiation also yield general L_p \to L_q hypercontrativity for 1.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Von Neumann algebras.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Group algebras.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Palazuelos, Carlos.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Parcet, Javier.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Junge, Marius
Title Hypercontractivity in Group von Neumann Algebras
Place, publisher, and date of publication Providence : American Mathematical Society,c2017
International Standard Book Number 9781470425654
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Memoirs of the American Mathematical Society
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5110283">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5110283</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.