ORPP logo

Frobenius Distributions : (Record no. 127865)

MARC details
000 -LEADER
fixed length control field 05741nam a22004813i 4500
001 - CONTROL NUMBER
control field EBC4901787
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729131323.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2016 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781470430030
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781470419479
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC4901787
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL4901787
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11406648
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)993773248
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA251.5.F76 2016
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 512.7/4
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Kohel, David.
245 10 - TITLE STATEMENT
Title Frobenius Distributions :
Remainder of title Lang-Trotter and Sato-Tate Conjectures.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 2016.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2016.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (250 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Contemporary Mathematics ;
Volume/sequential designation v.663
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Title page -- Contents -- Preface -- Lettre à Armand Borel -- Notes -- Points de repère chronologiques -- \frenchrefname -- Motivic Serre group, algebraic Sato-Tate group and Sato-Tate conjecture -- 1. Introduction -- 2. Hodge structures and Mumford-Tate group -- 3. Twisted Lefschetz groups -- 4. Hodge structures associated with -adic representations -- 5. Algebraic Sato-Tate conjecture -- 6. Connected components of \AST_{ } and \ST_{ } -- 7. Mumford-Tate group and Mumford-Tate conjecture -- 8. Some conditions for the algebraic Sato-Tate conjecture -- 9. Motivic Galois group and motivic Serre group -- 10. Motivic Mumford-Tate and Motivic Serre groups -- 11. The algebraic Sato-Tate group -- References -- An application of the effective Sato-Tate conjecture -- 1. Motivic -functions and motivic Galois groups -- 2. Equidistribution and motivic -functions -- 3. The case of an elliptic curve -- 4. The case of two elliptic curves -- 5. Notes on the general case -- Acknowledgements -- References -- Sato-Tate groups of some weight 3 motives -- 1. Introduction -- 2. Group-theoretic classification -- 3. Testing the generalized Sato-Tate conjecture -- 4. Modular forms and Hecke characters -- 5. Direct sum constructions -- 6. Tensor product constructions -- 7. The Dwork pencil -- 8. More modular constructions -- 9. Moment statistics -- Acknowledgments -- References -- Sato-Tate groups of ²= ⁸+ and ²= ⁷- . -- 1. Introduction -- 2. Background -- 3. Trace formulas -- 4. Guessing Sato-Tate groups -- 5. Determining Sato-Tate groups -- 6. Galois endomorphism types -- References -- Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II -- 1. Introduction -- 2. Recurrence relations -- 3. Accumulating remainder trees -- 4. Computing the first row -- 5. Hasse-Witt matrices of translated curves.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 6. Computing the whole matrix -- 7. Performance results -- 8. Computing Sato-Tate distributions -- References -- Quickly constructing curves of genus 4 with many points -- 1. Introduction -- 2. A family of genus-4 curves covering a genus-2 curve -- 3. Change in defect -- 4. Interlude on work by Hayashida -- 5. Genus-2 curves with small defect -- 6. Genus-4 curves with small defect -- 7. Results -- References -- Variants of the Sato-Tate and Lang-Trotter Conjectures -- 1. Introduction -- 2. Variations of the Sato-Tate conjecture -- 3. The Lang-Trotter Conjecture on Average -- 4. Champion Primes -- References -- On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius -- 1. Introduction -- 2. The unitary symplectic group -- 3. Weyl's integration formula -- 4. Equidistribution -- 5. Expressions of the law of the trace in genus 2 -- 6. The Viète map and its image -- 7. The symmetric alcove -- 8. Symmetric integration formula -- Appendix A. The character ring of -- References -- Lower-Order Biases in Elliptic Curve Fourier Coefficients in Families -- 1. Introduction -- 2. Tools for Calculating Biases -- 3. Proven Special Cases -- 4. Numerical Investigations -- 5. Conclusion and Future Work -- References -- Back Cover.
520 ## - SUMMARY, ETC.
Summary, etc. This volume contains the proceedings of the Winter School and Workshop on Frobenius Distributions on Curves, held from February 17-21, 2014 and February 24-28, 2014, at the Centre International de Rencontres Mathématiques, Marseille, France. This volume gives a representative sample of current research and developments in the rapidly developing areas of Frobenius distributions. This is mostly driven by two famous conjectures: the Sato-Tate conjecture, which has been recently proved for elliptic curves by L. Clozel, M. Harris and R. Taylor, and the Lang-Trotter conjecture, which is still widely open. Investigations in this area are based on a fine mix of algebraic, analytic and computational techniques, and the papers contained in this volume give a balanced picture of these approaches.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Frobenius algebras--Congresses.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Shparlinski, Igor.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Kohel, David
Title Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures
Place, publisher, and date of publication Providence : American Mathematical Society,c2016
International Standard Book Number 9781470419479
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Contemporary Mathematics
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901787">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4901787</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.