ORPP logo

Electrocatalysts for Low Temperature Fuel Cells : (Record no. 126015)

MARC details
000 -LEADER
fixed length control field 11095nam a22004813i 4500
001 - CONTROL NUMBER
control field EBC4856324
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729131230.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2017 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527803866
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9783527341320
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC4856324
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL4856324
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11382943
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)987088412
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QD569
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Maiyalagan, Thandavarayan.
245 10 - TITLE STATEMENT
Title Electrocatalysts for Low Temperature Fuel Cells :
Remainder of title Fundamentals and Recent Trends.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Newark :
Name of producer, publisher, distributor, manufacturer John Wiley & Sons, Incorporated,
Date of production, publication, distribution, manufacture, or copyright notice 2017.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2017.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (617 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Electrocatalysts for Low Temperature Fuel Cells: Fundamentals and Recent Trends -- Contents -- List of Contributors -- Preface -- 1: Principle of Low-temperature Fuel Cells Using an Ionic Membrane -- 1.1 Introduction -- 1.2 Thermodynamic Data and Theoretical Energy Efficiency under Equilibrium (j = 0) -- 1.2.1 Hydrogen/oxygen Fuel Cell -- 1.2.2 Direct Alcohol Fuel Cell -- 1.3 Electrocatalysis and the Rate of Electrochemical Reactions -- 1.3.1 Establishment of the Butler-Volmer Law (Charge Transfer Overpotential) -- 1.3.2 Mass Transfer Limitations (Concentration Overpotential) -- 1.3.3 Cell Voltage versus Current Density Curves -- 1.3.4 Energy Efficiency under Working Conditions ( j≠0) -- 1.3.4.1 Hydrogen/oxygen Fuel Cell -- 1.3.4.2 Direct Ethanol Fuel Cell -- 1.4 Influence of the Properties of the PEMFC Components (Electrode Catalyst Structure, Membrane Resistance, and Mass Transfer Limitations) on the Polarization Curves -- 1.4.1 Influence of the Catalytic Properties of Electrodes -- 1.4.2 Influence of the Membrane-specific Resistance -- 1.4.3 Influence of the Mass Transfer Limitations -- 1.5 Representative Examples of Low-temperature Fuel Cells -- 1.5.1 Direct Methanol Fuel Cell for Portable Electronics -- 1.5.2 Hydrogen/air PEMFC for the Electrical Vehicle -- 1.6 Conclusions and Outlook -- Acknowledgments -- References -- 2: Research Advancements in Low-temperature Fuel Cells -- 2.1 Introduction -- 2.2 Proton Exchange Membrane Fuel Cells -- 2.2.1 Current Scenario -- 2.2.2 Ideal Properties for Electrocatalyst, Catalyst Support, and Current Collectors for Market Entry -- 2.2.3 Role of Nanomaterials in Bringing Down Pt Loading -- 2.2.4 Types of Catalyst Supports (Activated Carbon, CNT, Graphene, etc.) -- 2.2.5 Non-Pt-Based Catalysts -- 2.2.6 Catalyst Corrosion and Fuel Cell Life (Protocols for Testing) -- 2.2.7 Type of Fuels (Alcohols).
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 2.3 Alkaline Fuel Cells -- 2.3.1 Fuels for Alkaline Membrane Fuel Cells -- 2.3.2 Types of Catalysts -- 2.3.3 Types of Membranes -- 2.3.4 System Development -- 2.4 Direct Borohydride Fuel Cells -- 2.4.1 Catalyst Development -- 2.4.2 System Development -- 2.5 Regenerative Fuel Cells -- 2.5.1 Electrocatalysts -- 2.5.2 System Development -- 2.6 Conclusions and Outlook -- Acknowledgments -- References -- 3: Electrocatalytic Reactions Involved in Low-temperature Fuel Cells -- 3.1 Introduction -- 3.2 Preparation and Characterization of Pt-based Plurimetallic Electrocatalysts -- 3.2.1 Preparation Methods of the Catalysts -- 3.2.1.1 Electrochemical Deposition -- 3.2.1.2 Impregnation-Reduction Methods -- 3.2.1.3 Colloidal Methods -- 3.2.1.4 Carbonyl Complex Route -- 3.2.1.5 Plasma-enhanced PVD -- 3.2.2 Characterization of Catalysts and Determination of Reaction Mechanisms by Physicochemical Methods -- 3.2.2.1 Physicochemical Characterizations -- 3.2.2.2 Electrochemical Measurements: Cyclic Voltammetry and CO Stripping -- 3.2.2.3 Infrared Reflectance Spectroscopy (EMIRS, FTIRS) -- 3.2.2.4 Differential Electrochemical Mass Spectrometry -- 3.2.2.5 Chromatographic Techniques -- 3.3 Mechanisms of the Electrocatalytic Reactions Involved in Low-temperature Fuel Cells -- 3.3.1 Electrocatalytic Oxidation of Hydrogen -- 3.3.2 Electrocatalytic Reduction of Dioxygen -- 3.3.3 Electrocatalysis of CO Oxidation -- 3.3.4 Oxidation of Alcohols in a Direct Alcohol Fuel Cell (DMFC, DEFC) -- 3.3.4.1 Oxidation of Methanol -- 3.3.4.2 Oxidation of Ethanol -- 3.4 Conclusions and Outlook -- Acknowledgment -- References -- 4: Direct Hydrocarbon Low-temperature Fuel Cell -- 4.1 Introduction -- 4.2 Direct Methanol Fuel Cell -- 4.2.1 Efficiency of DMFC -- 4.2.2 Methanol Crossover -- 4.2.3 Catalyst for Methanol Electrooxidation -- 4.3 Direct Ethanol Fuel Cell.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4.3.1 Proton Exchange Membrane-based DEFC -- 4.3.2 Anion Exchange Membrane-based DEFC -- 4.3.3 Ethanol Crossover -- 4.3.4 Catalyst for Ethanol Electrooxidation -- 4.4 Direct Ethylene Glycol Fuel Cell -- 4.4.1 Proton Exchange Membrane-based DEGFC -- 4.4.2 Anion Exchange Membrane-based DEGFC -- 4.4.3 Catalyst for Ethylene Glycol Electrooxidation -- 4.5 Direct Formic Acid Fuel Cell -- 4.5.1 Catalyst for Formic Acid Electrooxidation -- 4.6 Direct Glucose Fuel Cell -- 4.7 Commercialization Status of DHFC -- 4.8 Conclusions and Outlook -- References -- 5: The Oscillatory Electrooxidation of Small Organic Molecules -- 5.1 Introduction -- 5.2 In Situ and Online Approaches -- 5.3 The Effect of Temperature -- 5.4 Modified Surfaces -- 5.5 Conclusions and Outlook -- Acknowledgments -- References -- 6: Degradation Mechanism of Membrane Fuel Cells with Monoplatinum and Multicomponent Cathode Catalysts -- 6.1 Introduction -- 6.2 Synthesis and Experimental Methods of Studying Catalytic Systems under Model Conditions -- 6.2.1 Synthesis Methods Followed -- 6.2.1.1 Polyol Technique of Synthesis of Pt/C Catalysts -- 6.2.1.2 Thermochemical Method of Synthesis of Bi- and Trimetallic Catalysts -- 6.2.2 Electrochemical Research Methods -- 6.2.3 Structural Research Methods -- 6.3 Characteristics of Commercial and Synthesized Catalysts -- 6.3.1 Corrosion Stability of CMs (Supports) -- 6.3.1.1 Electrochemical Corrosion Exposure -- 6.3.1.2 Chemical Corrosion Exposure -- 6.3.2 Electrochemical and Structural Characteristics of Catalytic Systems -- 6.3.2.1 Monometallic Catalysts with Pt Content of 20 and 40 wt.% -- 6.3.2.2 Bimetallic Catalytic Systems (PtM) -- 6.3.2.3 Trimetallic Catalysts (PtCoCr/C) -- 6.4 Methods of Testing Catalysts within FC MEAs -- 6.5 Mechanism of Degradation Phenomenon in MEAs with Commercial Pt/C Catalysts.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 6.6 Characteristics of MEAs with 40Pt/CNT-T-based Cathode -- 6.7 Characteristics of MEAs with 50PtCoCr/C-based Cathodes -- 6.8 Conclusions and Outlook -- Acknowledgments -- References -- 7: Recent Developments in Electrocatalysts and Hybrid Electrocatalyst Support Systems for Polymer Electrolyte Fuel Cells -- 7.1 Introduction -- 7.2 Current State of Pt and Non-Pt Electrocatalysts Support Systems for PEFC -- 7.3 Novel Pt Electrocatalysts -- 7.3.1 1D, 2D, and 3D Nanostructures -- 7.4 Pt-based Electrocatalysts on Novel Carbon Supports -- 7.4.1 Mesoporous Carbon Supports -- 7.4.2 Carbon Nanotube Supports -- 7.4.3 Graphene-based Supports -- 7.5 Pt-based Electrocatalysts on Novel Carbon-free Supports -- 7.5.1 Tungsten Oxides and Carbides -- 7.5.2 Tin Oxide Supports -- 7.5.3 Titanium Nitride Supports -- 7.5.4 Doped Metal-based Supports -- 7.5.4.1 Doped Tin Oxide -- 7.5.4.2 Doped Titanium Dioxide -- 7.6 Pt-free Metal Electrocatalysts -- 7.6.1 Metal on Novel Carbon Supports -- 7.6.2 Metal on Novel Carbon-free Supports -- 7.7 Influence of Support: Electrocatalyst-Support Interactions and Effect of Surface Functional Groups -- 7.7.1 Enhancing Electrocatalytic Activity -- 7.7.2 Enhancing CO Tolerance -- 7.8 Hybrid Catalyst Support Systems -- 7.8.1 Carbon-enriched Metal-based Supports -- 7.8.2 Polymers in Catalyst Support Systems -- 7.8.3 Polyoxometalates Liquid Catholytes -- 7.9 Conclusions and Outlook -- References -- 8: Role of Catalyst Supports: Graphene Based Novel Electrocatalysts -- 8.1 Introduction -- 8.2 Graphene-based Cathode Catalysts for Oxygen Reduction Reaction -- 8.2.1 Graphene-supported Nonnoble Metal ORR Catalysts -- 8.2.1.1 Transition Metal-Nitrogen (N) Graphene Catalysts -- 8.2.1.2 Graphene-supported Metal Oxide/Sulfide Nanocomposites -- 8.2.2 Graphene-supported Noble Metal Catalysts -- 8.2.2.1 Graphene-supported Pt/Pt-alloy ORR Catalysts.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 8.2.2.2 Graphene-supported Other Metal Alloys as ORR Catalysts -- 8.3 Graphene-based Anode Catalysts -- 8.3.1 Graphene-based Catalysts for Methanol Oxidation Reaction -- 8.3.2 Graphene-based Catalysts for Ethanol Oxidation Reaction -- 8.3.3 Graphene-based Catalysts for Formic Acid Oxidation Reaction -- 8.4 Conclusions and Outlook -- Acknowledgment -- References -- 9: Recent Progress in Nonnoble Metal Electrocatalysts for Oxygen Reduction for Alkaline Fuel Cells -- 9.1 Introduction -- 9.1.1 Alkaline Fuel Cells -- 9.1.2 Oxygen Reduction Reaction -- 9.2 Nonnoble Metal Electrocatalysts -- 9.2.1 Carbon-supported Metal-Nb Matrix -- 9.2.1.1 Fundamental Overview -- 9.2.1.2 Proposed Active Sites -- 9.2.1.3 Synthesis Methods -- 9.2.2 Transition Metal Oxides -- 9.2.3 Transition Metal Chalcogenides -- 9.2.4 Transition Metal Carbides/Nitrides/Oxynitrides -- 9.2.4.1 Transition Metal Carbides -- 9.2.4.2 Transition Metal Nitrides/Oxynitrides -- 9.2.5 Perovskites -- 9.2.6 Metal-free Electrocatalysts -- 9.2.6.1 Carbon Nanotube-based Metal-free Electrocatalysts -- 9.2.6.2 Graphene-based Metal-free Electrocatalysts -- 9.2.6.3 Other Types of Metal-free Carbon Electrocatalysts -- 9.3 Conclusions and Outlook -- References -- 10: Anode Electrocatalysts for Direct Borohydride and Direct Ammonia Borane Fuel Cells -- 10.1 Introduction -- 10.2 Direct Borohydride (and Ammonia Borane) Fuel Cells -- 10.2.1 Basics of DBFC and DABFC -- 10.2.2 Main Issues of the DBFC and DABFC -- 10.3 Mechanistic Investigations of the BOR and BH3OR at Noble Electrocatalysts -- 10.3.1 Different Families of (Electro)Catalysts for the BOR -- 10.3.2 BOR Mechanism at Pt Surfaces -- 10.3.3 The issue of H2 Generation (and Possible Oxidation) during the BOR -- 10.3.4 Effects of the Mass Transfer, Pt Loading, and Active Layer Thickness on the BOR -- 10.3.5 Does the BH3OR Mechanism Differ from the BOR?.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 10.4 Toward Ideal Anode of DBFC and DABFC.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Electrocatalysis.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Saji, Viswanathan S.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Maiyalagan, Thandavarayan
Title Electrocatalysts for Low Temperature Fuel Cells
Place, publisher, and date of publication Newark : John Wiley & Sons, Incorporated,c2017
International Standard Book Number 9783527341320
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4856324">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4856324</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.