ORPP logo

Hydrogen Production Technologies. (Record no. 124760)

MARC details
000 -LEADER
fixed length control field 11148nam a22005293i 4500
001 - CONTROL NUMBER
control field EBC4829162
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240729131153.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2017 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119283669
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119283645
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC4829162
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL4829162
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11365250
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL1003224
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)974035692
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TP261.H9.H937 2017
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 665.81
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Sankir, Mehmet.
245 10 - TITLE STATEMENT
Title Hydrogen Production Technologies.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Newark :
Name of producer, publisher, distributor, manufacturer John Wiley & Sons, Incorporated,
Date of production, publication, distribution, manufacture, or copyright notice 2017.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2017.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (652 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Advances in Hydrogen Production and Storage (AHPS) Series
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Catalytic and Electrochemical Hydrogen Production -- 1 Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling -- 1.1 Introduction -- 1.2 Catalyst Development for the Steam Reforming Process -- 1.2.1 Catalyst Development for the Steam Reforming of Methanol (SRM) -- 1.2.2 Catalyst Development for the Steam Reforming of Ethanol (SRE) -- 1.2.2.1 Co-Based Catalysts for SRE -- 1.2.2.2 Ni-Based Catalysts for SRE -- 1.2.2.3 Bimetallic-Based Catalysts for SRE -- 1.2.3 Catalyst Development for the Steam Reforming of Glycerol (SRG) -- 1.3 Kinetics and Reaction Mechanism for Steam Reforming of Oxygenated Hydrocarbons -- 1.3.1 Surface Reaction Mechanism for SRM -- 1.3.2 Surface Reaction Mechanism for SRE -- 1.3.3 Surface Reaction Mechanism for SRG -- 1.4 Reactor Modeling and Simulation in Steam Reforming of Oxygenated Hydrocarbons -- References -- 2 Ammonia Decomposition for Decentralized Hydrogen Production in Microchannel Reactors: Experiments and CFD Simulations -- 2.1 Introduction -- 2.2 Ammonia Decomposition for Hydrogen Production -- 2.2.1 Ammonia as a Hydrogen Carrier -- 2.2.2 Thermodynamics of Ammonia Decomposition -- 2.2.3 Reaction Mechanism and Kinetics for Ammonia Decomposition -- 2.2.3.1 Effect of Ammonia Concentration -- 2.2.3.2 Effect of Hydrogen Concentration -- 2.2.4 Current Status for Hydrogen Production Using Ammonia Decomposition -- 2.2.4.1 Microreactors for Ammonia Decomposition -- 2.3 Ammonia-Fueled Microchannel Reactors for Hydrogen Production: Experiments -- 2.3.1 Microchannel Reactor Design -- 2.3.2 Reactor Operation and Performance -- 2.3.2.1 Microchannel Reactor Operation -- 2.3.2.2 Performance and Operational Considerations -- 2.3.2.3 Performance Comparison with Other Ammonia Microreactors.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 2.4 CFD Simulation of Hydrogen Production in Ammonia-Fueled Microchannel Reactors -- 2.4.1 Model Validation -- 2.4.2 Velocity, Temperature and Concentration Distributions -- 2.4.3 Evaluation of Mass Transport Limitations -- 2.4.4 Model Limitations: Towards Multiscale Simulations -- 2.5 Summary -- Acknowledgments -- References -- 3 Hydrogen Production with Membrane Systems -- 3.1 Introduction -- 3.2 Pd-Based Membranes -- 3.2.1 Long-Term Stability of Ceramic Supported Thin Pd-Based Membranes -- 3.2.2 Long-Term Stability of Metallic Supported Thin Pd-Based Membranes -- 3.3 Fuel Reforming in Membrane Reactors for Hydrogen Production -- 3.3.1 Ceramic Supported Pd-Based Membrane Reactor and Comparison with Commercial Membrane -- 3.3.2 Metallic Supported Pd-Based Membrane Reactor -- 3.4 Thermodynamic and Economic Analysis of Fluidized Bed Membrane Reactors for Methane Reforming -- 3.4.1 Comparison of Membrane Reactors to Emergent Technologies -- 3.4.1.1 Methods and Assumptions -- 3.4.1.2 Comparison -- 3.4.2 Techno-Economical Comparison of Membrane Reactors to Benchmark Reforming Plant -- 3.5 Conclusions -- Acknowledgments -- References -- 4 Catalytic Hydrogen Production from Bioethanol -- 4.1 Introduction -- 4.2 Production Technology Overview -- 4.2.1 Fermentative Hydrogen Production -- 4.2.2 Photocatalytic Hydrogen Production -- 4.2.3 Aqueous Phase Reforming -- 4.2.4 CO2 Dry Reforming -- 4.2.5 Plasma Reforming -- 4.2.6 Partial Oxidation -- 4.2.7 Steam Reforming -- 4.3 Catalyst Overview -- 4.4 Catalyst Optimization Strategies -- 4.5 Reaction Mechanism and Kinetic Studies -- 4.6 Computational Approaches -- 4.7 Economic Considerations -- 4.8 Future Development Directions -- Acknowledgment -- References -- 5 Hydrogen Generation from the Hydrolysis of Ammonia Borane Using Transition Metal Nanoparticles as Catalyst -- 5.1 Introduction.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 5.2 Transition Metal Nanoparticles in Catalysis -- 5.3 Preparation, Stabilization and Characterization of Metal Nanoparticles -- 5.4 Transition Metal Nanoparticles in Hydrogen Generation from the Hydrolysis of Ammonia Borane -- 5.5 Durability of Catalysts in Hydrolysis of Ammonia Borane -- 5.6 Conclusion -- References -- 6 Hydrogen Production by Water Electrolysis -- 6.1 Historical Aspects of Water Electrolysis -- 6.2 Fundamentals of Electrolysis -- 6.2.1 Thermodynamics -- 6.2.2 Kinetics and Efficiencies -- 6.3 Modern Status of Electrolysis -- 6.3.1 Water Electrolysis Technologies -- 6.3.2 Alkaline Water Electrolysis -- 6.3.3 PEM Water Electrolysis -- 6.3.4 High Temperature Water Electrolysis -- 6.4 Perspectives of Hydrogen Production by Electrolysis -- Acknowledgment -- References -- 7 Electrochemical Hydrogen Production from SO2 and Water in a SDE Electrolyzer -- 7.1 Introduction -- 7.2 Membrane Characterization -- 7.2.1 Weight Change -- 7.2.2 Ion Exchange Capacity (IEC) -- 7.2.3 TGA-MS -- 7.3 MEA Characterization -- 7.3.1 MEA Manufacture -- 7.3.2 MEA Characterization -- 7.4 Effect of Anode Impurities -- 7.5 High Temperature SO2 Electrolysis -- 7.6 Conclusion -- References -- Part II Bio Hydrogen Production -- 8 Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil -- 8.1 Introduction -- 8.2 Biomass Pyrolysis to Produce Bio-Oils -- 8.2.1 Fast Pyrolysis for Bio-Oil Production -- 8.2.2 Pyrolysis Reactions -- 8.2.2.1 Hemicellulose Pyrolysis -- 8.2.2.2 Cellulose Pyrolysis -- 8.2.2.3 Lignin Pyrolysis -- 8.2.2.4 Char Formation Process -- 8.2.3 Influence of the Pretreatment of Raw Biomass and Pyrolysis Paramenters on Bio-Oil Production -- 8.2.4 Pyrolysis Reactors -- 8.2.4.1 Drop Tube Reactor -- 8.2.4.2 Bubbling Fluid Beds -- 8.2.4.3 Circulating Fluid Beds and Transported Beds -- 8.2.4.4 Rotating Cone -- 8.2.4.5 Ablative Pyrolysis.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 8.2.4.6 Vacuum Pyrolysis -- 8.2.4.7 Screw or Auger Reactors -- 8.3 Bio-oil Reforming Processes -- 8.3.1 Bio-oil Reforming Reactions -- 8.3.2 Reforming Catalysts -- 8.3.2.1 Non-Noble Metal-Based Catalysts -- 8.3.2.2 Noble Metal-Based Catalysts -- 8.3.2.3 Conventional Supports -- 8.3.2.4 Non-Conventional Supports -- 8.3.3 Reaction Systems -- 8.3.4 Reforming Process Intensifications -- 8.3.4.1 Sorption Enhanced Steam Reforming -- 8.3.4.2 Chemical Looping -- 8.3.4.3 Sorption Enhanced Chemical Looping -- 8.4 Future Prospects -- References -- 9 Production of a Clean Hydrogen-Rich Gas by the Staged Gasification of Biomass and Plastic Waste -- 9.1 Introduction -- 9.2 Chemistry of Gasification -- 9.3 Tar Cracking and H2 Production -- 9.4 Staged Gasification -- 9.4.1 Two-Stage UOS Gasification Process -- 9.4.2 Three-Stage UOS Gasification Process -- 9.5 Experimental Results and Discussion -- 9.5.1 Effects of Type of Feed Material on H2 Production -- 9.5.2 Effect of Activated Carbon on H2 Production -- 9.5.3 Effects of Other Reaction Parameters on H2 Production -- 9.5.3.1 Temperature -- 9.5.3.2 ER -- 9.5.3.3 Gasifying Agent -- 9.5.4 Comparison of Two-Stage and Three-Stage Gasifiers -- 9.5.5 Tar Removal Mechanism over Activated Carbon -- 9.5.6 Deactivation of Activated Carbon and Long-Term Gasification Experiments -- 9.5.7 Removal of Other Impurities (NH3, H2S, and HCl) -- 9.6 Conclusions -- References -- 10 Enhancement of Bio-Hydrogen Production Technologies by Sulphate-Reducing Bacteria -- 10.1 Introduction -- 10.2 Sulphate-Reducing Bacteria for H2 Production -- 10.3 Mathematical Modeling of the SR Fermentation -- 10.4 Bifurcation Analysis -- 10.5 Process Control Strategies -- 10.6 Conclusions -- Acknowledgment -- Nomenclature -- References.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 11 Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: Fundamentals and Perspective Applications -- 11.1 Introduction -- 11.2 Principles of MEC for Hydrogen Production -- 11.3 Thermodynamics of MEC -- 11.4 Factors Influencing the Performance of MECs -- 11.4.1 Biological Factors -- 11.4.1.1 Electrochemically Active Bacteria (EAB) in MECs -- 11.4.1.2 Extracellular Electron Transfer in MECs -- 11.4.1.3 Inoculation and Source of Inoculum -- 11.4.2 Electrode Materials Used in MECs -- 11.4.2.1 Anode Electrode Materials -- 11.4.2.2 Cathode Electrode Materials or Catalysts -- 11.4.3 Membrane or Separator -- 11.4.4 Physical Factors -- 11.4.5 Substrates Used in MECs -- 11.4.6 MEC Operational Factors -- 11.4.6.1 Applied Voltage -- 11.4.6.2 Other Key Operational Factors -- 11.5 Current Application of MECs -- 11.5.1 Hydrogen Production and Wastewater Treatment -- 11.5.1.1 Treatment of DWW Using MECs -- 11.5.1.2 Use of MECs for Treatment of IWW and Other Types of WW -- 11.5.2 Application of MECs in Removal of Ammonium or Nitrogen from Urine -- 11.5.3 MECs for Valuable Products Synthesis -- 11.5.3.1 Methane (CH4) -- 11.5.3.2 Acetate -- 11.5.3.3 Hydrogen Peroxide (H2O2) -- 11.5.3.4 Ethanol (C2H5OH) -- 11.5.3.5 Formic Acid (HCOOH) -- 11.6 Conclusions and Prospective Application of MECs -- Acknowledgments -- References -- 12 Algae to Hydrogen: Novel Energy-Efficient Co-Production of Hydrogen and Power -- 12.1 Introduction -- 12.2 Algae Potential and Characteristics -- 12.2.1 Algae Potential -- 12.2.2 Types of Algae -- 12.2.3 Compositions of Algae -- 12.3 Energy-Efficient Energy Harvesting Technologies -- 12.4 Pretreatment (Drying) -- 12.5 Conversion of Algae to Hydrogen-Rich Gases -- 12.5.1 SCWG for Algae -- 12.5.1.1 Integrated System with SCWG -- 12.5.1.2 Analysis of the Integrated System.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 12.5.1.3 Performance of Integrated System.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Hydrogen as fuel--Technological innovations.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Sankir, Nurdan Demirci.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Sankir, Mehmet
Title Hydrogen Production Technologies
Place, publisher, and date of publication Newark : John Wiley & Sons, Incorporated,c2017
International Standard Book Number 9781119283645
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Advances in Hydrogen Production and Storage (AHPS) Series
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4829162">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4829162</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.