ORPP logo

Smart Healthcare Systems. (Record no. 12111)

MARC details
000 -LEADER
fixed length control field 09926nam a22004933i 4500
001 - CONTROL NUMBER
control field EBC5838740
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240724113845.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2019 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780429671777
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9780367030568
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5838740
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5838740
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1110708621
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number R859.7.A78 .S637 2020
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610.285
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Sinha, Adwitiya.
245 10 - TITLE STATEMENT
Title Smart Healthcare Systems.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Milton :
Name of producer, publisher, distributor, manufacturer CRC Press LLC,
Date of production, publication, distribution, manufacture, or copyright notice 2019.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2019.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (249 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- 1. Big Data Analytics in Healthcare -- 1.1 Introduction: Background and Driving Forces -- 1.2 Related Work -- 1.3 Observations -- 1.4 Open Challenges -- 1.5 Proposed Solutions -- 1.6 Conclusion -- References -- 2. Smart Medical Diagnosis -- 2.1 Introduction: Background and Driving Forces -- 2.2 Description and Experimentation -- 2.2.1 Heart Dataset -- 2.2.2 Diabetes Dataset -- 2.2.3 Breast Cancer Dataset -- 2.2.4 Parkinson's Dataset -- 2.2.5 Kidney Dataset -- 2.3 Visualization -- 2.3.1 Heart Disease -- 2.3.2 Diabetes -- 2.3.3 Breast Cancer -- 2.3.4 Parkinson's Disease -- 2.3.5 Kidney Disease -- 2.4 Classification -- 2.4.1 Logistic Regression -- 2.4.2 Bayesian Logistic Regression -- 2.4.3 Decision Trees -- 2.4.4 Random Forest -- 2.4.5 Extreme Gradient Boosting -- 2.4.6 Genetic Algorithm -- 2.4.7 Comparison Model -- 2.5 Web Application -- 2.6 Conclusion -- References -- 3. Lifestyle Application for Visually Impaired -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Methodology -- 3.3.1 Text Recognition -- 3.3.2 Color Recognition -- 3.3.3 Face Recognition -- 3.3.4 Braille Touch Keyboard -- 3.3.5 Help from Volunteers -- 3.3.6 Object Recognition -- 3.3.7 Barcode to Product Description -- 3.4 Algorithms Used -- 3.4.1 Tesseract Algorithm -- 3.4.2 Scalable Object Detection (Deep Neural Network) -- 3.4.3 Single Shot Multibox Detector -- 3.4.4 Principle Component Analysis -- 3.5 Results and Findings -- 3.6 Conclusion and Future Work -- References -- 4. Classification of Genetic Mutations -- 4.1 Introduction -- 4.2 Related Work -- 4.3 Dataset Collection -- 4.4 Methodology -- 4.4.1 Data Preprocessing -- 4.4.1.1 Natural Language Processing -- 4.5 Machine Learning Algorithms -- 4.5.1 Decision Tree -- 4.5.2 Random Forest -- 4.5.3 XGBoost.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4.5.4 Artificial Neural Networks -- 4.5.5 Support Vector Machine -- 4.5.6 Naïve Bayes -- 4.6 System Architecture -- 4.7 Block Diagram of Proposed Model -- 4.8 Evaluation Methods -- 4.9 Experimental Result -- 4.10 Conclusion -- References -- 5. m-Health: Community-Based Android Application for Medical Services -- 5.1 Motivation -- 5.2 Background -- 5.3 m-Health App: Description -- 5.3.1 Android as a platform -- 5.3.2 Real-Time Database: Firebase -- 5.3.3 Firebase Cloud Messaging -- 5.3.4 GeoFire -- 5.3.4.1 Example Usage -- 5.3.5 Star Rating Prediction -- 5.3.5.1 Feature Vector Generation -- 5.3.5.2 Training and Rating Prediction -- 5.3.5.3 Multinomial Naive Bayes Approach -- 5.3.6 Flask -- 5.4 Implementation Results -- 5.4.1 Process for Results -- 5.5 Conclusion -- 5.6 Future Scope -- References -- 6. Nanoemulsions: Status in Antimicrobial Therapy -- 6.1 Introduction -- 6.1.1 NEs as Novel Delivery Systems for Drugs -- 6.1.2 Methods of Preparation of NEs -- 6.1.2.1 Low-Energy Methods -- 6.1.2.2 High-Energy Methods -- 6.1.3 Comparison between the Methods -- 6.2 Characterization of NEs -- 6.3 Advantages of NEs as Antimicrobial Agents -- 6.4 Mechanism of Action Responsible for Antimicrobial Activity of NEs -- 6.5 Application of NE as Antimicrobial Agents -- 6.5.1 NEs as Antibacterial Agents -- 6.5.2 NEs as Antifungal Agents -- 6.5.3 NEs as Antiviral Agents -- 6.5.4 NEs as Antiparasitic Agents -- 6.6 Patents Related to NEs Having Antimicrobial Activity -- 6.7 Limitations of NEs -- 6.8 Future Prospective -- 6.9 Conclusion -- References -- 7. Analysis of Air Quality and Impacts on Human Health -- 7.1 Introduction -- 7.2 Related Work -- 7.3 Materials and Methodology -- 7.3.1 Study Area -- 7.3.2 Data Collection -- 7.3.3 Data Preprocessing -- 7.3.4 Analysis -- 7.4 Machine Learning Techniques Used -- 7.4.1 Multiple Linear Regression -- 7.4.2 Random Forest.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 7.4.3 Artificial Neural Network -- 7.4.4 Relationship between Pollutants and Meteorological Factor -- 7.4.5 Predicting AQI Using ANN Model -- 7.5 Data Visualization -- 7.5.1 Correlation Plot -- 7.5.2 Calendar Plot -- 7.5.3 Normalized Line Plot -- 7.6 Results -- 7.7 Novelty -- 7.8 Conclusions -- References -- 8. Brain Tumor Detection and Classification in MRI: Technique for Smart Healthcare Adaptation -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Basic Methodology -- 8.3.1 Preprocessing -- 8.3.2 Segmentation -- 8.3.3 Feature Extraction -- 8.3.4 Classification -- 8.3.5 Deep Learning Methodology -- 8.4 Datasets and Evaluation Criteria -- 8.4.1 Evaluation Criteria -- 8.5 Conclusion -- References -- 9. Deep Strategies in Computer-Assisted Diagnosis and Classification of Abnormalities in Medical Images -- 9.1 Introduction -- 9.2 Trends for Deep Architecture Learning -- 9.3 Deep CNN Architecture Variants -- 9.4 Deep Architectures in Radiology for Problem-Solving -- 9.5 Issues, Limitations, and Dependencies on Medical Imaging Research -- 9.6 Discussion on the Presented Work -- References -- 10. Major Histocompatibility Complex Binding and Various Health Parameters Analysis -- 10.1 Introduction -- 10.1.1 Vaccines and T-Cells -- 10.1.2 MHC: Class I and Class II -- 10.1.3 SMM: Stabilized Matrix Method -- 10.1.4 BLOSUM: Block Substitution Matrix -- 10.1.5 PMBEC: Peptide MHC Binding Energy Covariance Matrix -- 10.2 Literature Review -- 10.3 Methodology -- 10.4 Technology Used -- 10.4.1 R Language -- 10.4.2 Stabilized Matrix Method -- 10.4.3 IBM Watson -- 10.4.4 Shiny Apps Server -- 10.5 Results -- 10.6 Conclusion and Future Scope -- References -- 11. Partial Digest Problem -- 11.1 Introduction: Background and Driving Forces -- 11.2 The Partial Digest Problem -- 11.3 Datasets -- 11.4 Existing Approaches -- 11.4.1 Naïve Algorithm.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 11.4.1.1 Pseudocode-Naïve Algorithm -- 11.4.2 Improved Naïve Algorithm -- 11.4.2.1 Pseudocode-Improved Naïve Algorithm -- 11.4.3 Branch-and-Bound Algorithm -- 11.4.3.1 Pseudocode-Branch-and-Bound Algorithm -- 11.4.4 Skiena's Backtracking Algorithm -- 11.4.4.1 Pseudocode-Skiena's Backtracking Algorithm -- 11.4.5 Modern PDP Algorithms -- 11.4.5.1 The Breadth First Search Algorithm -- 11.4.5.2 The Space-Optimized Breadth First Search Algorithm -- 11.4.6 Computational Results -- 11.5 Conclusion -- References -- 12. Deep Learning for Next-Generation Healthcare: A Survey of State-of-the-Art and Research Prospects -- 12.1 Introduction -- 12.2 Deep Learning -- 12.2.1 Motivation -- 12.2.2 Deep Learning Framework -- 12.2.3 Deep Learning Models -- 12.2.3.1 Stacked Autoencoders -- 12.2.3.2 Deep Belief Network -- 12.2.3.3 Deep Boltzmann Machine -- 12.2.3.4 Recurrent Neural Network -- 12.2.3.5 Convolutional Neural Networks -- 12.3 Application of Deep Learning in Healthcare Systems -- 12.3.1 Medical Imaging -- 12.3.2 Bioinformatics -- 12.3.3 Medical e-Health Records -- 12.3.4 Health Monitoring -- 12.4 Challenges and Future Research Prospects -- 12.5 Conclusions -- References -- 13. Applications of Protein Nanoparticles as Drug Delivery Vehicle -- 13.1 Introduction -- 13.2 Characterization of Protein NPs -- 13.3 General Protein Used for Preparation of NPs -- 13.3.1 Albumin -- 13.3.2 Gelatin and Elastin -- 13.3.3 Gliadin and Legumin -- 13.3.4 Zein -- 13.3.5 Soy and Milk Protein -- 13.3.6 Whey Proteins -- 13.4 Factors Affecting Protein NP Preparation -- 13.5 Technique for the Preparation of Protein NPs -- 13.5.1 Coacervation/Desolvation Method -- 13.5.2 Emulsion/Solvent Extraction -- 13.5.3 Complex Coacervation -- 13.5.4 Electrospray -- 13.6 Toxicity of NPs -- 13.7 Protein NP as Diagnostic Tool -- 13.8 Protein NPs as Therapeutics -- 13.8.1 NPs for Anticancer Therapy.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 13.8.2 NPs for Immunomodulation -- 13.8.3 NPs for Ocular Disorders -- 13.8.4 NPs Reported for Other Therapies -- 13.9 Conclusion -- References -- 14. Exploring Food Domain Using Deep Neural Networks -- 14.1 Introduction -- 14.2 Challenges -- 14.3 Related Work -- 14.4 Methodology -- 14.4.1 Dataset -- 14.4.2 CNN Machine Learning Algorithm -- 14.4.3 R Packages Used -- 14.4.3.1 Keras -- 14.4.3.2 CARET -- 14.4.3.3 Shiny -- 14.5 Result -- 14.6 User Interface -- 14.7 Conclusion -- References -- Index.
520 ## - SUMMARY, ETC.
Summary, etc. The book provides details of applying intelligent mining techniques for extracting & pre-processing medical data from various sources, for application-based healthcare research. Moreover, different datasets are used, thereby exploring real-world case studies related to medical informatics.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Artificial intelligence-Medical applications.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Medical informatics.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Rathi, Megha.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Sinha, Adwitiya
Title Smart Healthcare Systems
Place, publisher, and date of publication Milton : CRC Press LLC,c2019
International Standard Book Number 9780367030568
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5838740">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5838740</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.