Smart Healthcare Systems. (Record no. 12111)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 09926nam a22004933i 4500 |
001 - CONTROL NUMBER | |
control field | EBC5838740 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240724113845.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2019 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9780429671777 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9780367030568 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC5838740 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL5838740 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)1110708621 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | R859.7.A78 .S637 2020 |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 610.285 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Sinha, Adwitiya. |
245 10 - TITLE STATEMENT | |
Title | Smart Healthcare Systems. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Milton : |
Name of producer, publisher, distributor, manufacturer | CRC Press LLC, |
Date of production, publication, distribution, manufacture, or copyright notice | 2019. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2019. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (249 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- 1. Big Data Analytics in Healthcare -- 1.1 Introduction: Background and Driving Forces -- 1.2 Related Work -- 1.3 Observations -- 1.4 Open Challenges -- 1.5 Proposed Solutions -- 1.6 Conclusion -- References -- 2. Smart Medical Diagnosis -- 2.1 Introduction: Background and Driving Forces -- 2.2 Description and Experimentation -- 2.2.1 Heart Dataset -- 2.2.2 Diabetes Dataset -- 2.2.3 Breast Cancer Dataset -- 2.2.4 Parkinson's Dataset -- 2.2.5 Kidney Dataset -- 2.3 Visualization -- 2.3.1 Heart Disease -- 2.3.2 Diabetes -- 2.3.3 Breast Cancer -- 2.3.4 Parkinson's Disease -- 2.3.5 Kidney Disease -- 2.4 Classification -- 2.4.1 Logistic Regression -- 2.4.2 Bayesian Logistic Regression -- 2.4.3 Decision Trees -- 2.4.4 Random Forest -- 2.4.5 Extreme Gradient Boosting -- 2.4.6 Genetic Algorithm -- 2.4.7 Comparison Model -- 2.5 Web Application -- 2.6 Conclusion -- References -- 3. Lifestyle Application for Visually Impaired -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Methodology -- 3.3.1 Text Recognition -- 3.3.2 Color Recognition -- 3.3.3 Face Recognition -- 3.3.4 Braille Touch Keyboard -- 3.3.5 Help from Volunteers -- 3.3.6 Object Recognition -- 3.3.7 Barcode to Product Description -- 3.4 Algorithms Used -- 3.4.1 Tesseract Algorithm -- 3.4.2 Scalable Object Detection (Deep Neural Network) -- 3.4.3 Single Shot Multibox Detector -- 3.4.4 Principle Component Analysis -- 3.5 Results and Findings -- 3.6 Conclusion and Future Work -- References -- 4. Classification of Genetic Mutations -- 4.1 Introduction -- 4.2 Related Work -- 4.3 Dataset Collection -- 4.4 Methodology -- 4.4.1 Data Preprocessing -- 4.4.1.1 Natural Language Processing -- 4.5 Machine Learning Algorithms -- 4.5.1 Decision Tree -- 4.5.2 Random Forest -- 4.5.3 XGBoost. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 4.5.4 Artificial Neural Networks -- 4.5.5 Support Vector Machine -- 4.5.6 Naïve Bayes -- 4.6 System Architecture -- 4.7 Block Diagram of Proposed Model -- 4.8 Evaluation Methods -- 4.9 Experimental Result -- 4.10 Conclusion -- References -- 5. m-Health: Community-Based Android Application for Medical Services -- 5.1 Motivation -- 5.2 Background -- 5.3 m-Health App: Description -- 5.3.1 Android as a platform -- 5.3.2 Real-Time Database: Firebase -- 5.3.3 Firebase Cloud Messaging -- 5.3.4 GeoFire -- 5.3.4.1 Example Usage -- 5.3.5 Star Rating Prediction -- 5.3.5.1 Feature Vector Generation -- 5.3.5.2 Training and Rating Prediction -- 5.3.5.3 Multinomial Naive Bayes Approach -- 5.3.6 Flask -- 5.4 Implementation Results -- 5.4.1 Process for Results -- 5.5 Conclusion -- 5.6 Future Scope -- References -- 6. Nanoemulsions: Status in Antimicrobial Therapy -- 6.1 Introduction -- 6.1.1 NEs as Novel Delivery Systems for Drugs -- 6.1.2 Methods of Preparation of NEs -- 6.1.2.1 Low-Energy Methods -- 6.1.2.2 High-Energy Methods -- 6.1.3 Comparison between the Methods -- 6.2 Characterization of NEs -- 6.3 Advantages of NEs as Antimicrobial Agents -- 6.4 Mechanism of Action Responsible for Antimicrobial Activity of NEs -- 6.5 Application of NE as Antimicrobial Agents -- 6.5.1 NEs as Antibacterial Agents -- 6.5.2 NEs as Antifungal Agents -- 6.5.3 NEs as Antiviral Agents -- 6.5.4 NEs as Antiparasitic Agents -- 6.6 Patents Related to NEs Having Antimicrobial Activity -- 6.7 Limitations of NEs -- 6.8 Future Prospective -- 6.9 Conclusion -- References -- 7. Analysis of Air Quality and Impacts on Human Health -- 7.1 Introduction -- 7.2 Related Work -- 7.3 Materials and Methodology -- 7.3.1 Study Area -- 7.3.2 Data Collection -- 7.3.3 Data Preprocessing -- 7.3.4 Analysis -- 7.4 Machine Learning Techniques Used -- 7.4.1 Multiple Linear Regression -- 7.4.2 Random Forest. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 7.4.3 Artificial Neural Network -- 7.4.4 Relationship between Pollutants and Meteorological Factor -- 7.4.5 Predicting AQI Using ANN Model -- 7.5 Data Visualization -- 7.5.1 Correlation Plot -- 7.5.2 Calendar Plot -- 7.5.3 Normalized Line Plot -- 7.6 Results -- 7.7 Novelty -- 7.8 Conclusions -- References -- 8. Brain Tumor Detection and Classification in MRI: Technique for Smart Healthcare Adaptation -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Basic Methodology -- 8.3.1 Preprocessing -- 8.3.2 Segmentation -- 8.3.3 Feature Extraction -- 8.3.4 Classification -- 8.3.5 Deep Learning Methodology -- 8.4 Datasets and Evaluation Criteria -- 8.4.1 Evaluation Criteria -- 8.5 Conclusion -- References -- 9. Deep Strategies in Computer-Assisted Diagnosis and Classification of Abnormalities in Medical Images -- 9.1 Introduction -- 9.2 Trends for Deep Architecture Learning -- 9.3 Deep CNN Architecture Variants -- 9.4 Deep Architectures in Radiology for Problem-Solving -- 9.5 Issues, Limitations, and Dependencies on Medical Imaging Research -- 9.6 Discussion on the Presented Work -- References -- 10. Major Histocompatibility Complex Binding and Various Health Parameters Analysis -- 10.1 Introduction -- 10.1.1 Vaccines and T-Cells -- 10.1.2 MHC: Class I and Class II -- 10.1.3 SMM: Stabilized Matrix Method -- 10.1.4 BLOSUM: Block Substitution Matrix -- 10.1.5 PMBEC: Peptide MHC Binding Energy Covariance Matrix -- 10.2 Literature Review -- 10.3 Methodology -- 10.4 Technology Used -- 10.4.1 R Language -- 10.4.2 Stabilized Matrix Method -- 10.4.3 IBM Watson -- 10.4.4 Shiny Apps Server -- 10.5 Results -- 10.6 Conclusion and Future Scope -- References -- 11. Partial Digest Problem -- 11.1 Introduction: Background and Driving Forces -- 11.2 The Partial Digest Problem -- 11.3 Datasets -- 11.4 Existing Approaches -- 11.4.1 Naïve Algorithm. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 11.4.1.1 Pseudocode-Naïve Algorithm -- 11.4.2 Improved Naïve Algorithm -- 11.4.2.1 Pseudocode-Improved Naïve Algorithm -- 11.4.3 Branch-and-Bound Algorithm -- 11.4.3.1 Pseudocode-Branch-and-Bound Algorithm -- 11.4.4 Skiena's Backtracking Algorithm -- 11.4.4.1 Pseudocode-Skiena's Backtracking Algorithm -- 11.4.5 Modern PDP Algorithms -- 11.4.5.1 The Breadth First Search Algorithm -- 11.4.5.2 The Space-Optimized Breadth First Search Algorithm -- 11.4.6 Computational Results -- 11.5 Conclusion -- References -- 12. Deep Learning for Next-Generation Healthcare: A Survey of State-of-the-Art and Research Prospects -- 12.1 Introduction -- 12.2 Deep Learning -- 12.2.1 Motivation -- 12.2.2 Deep Learning Framework -- 12.2.3 Deep Learning Models -- 12.2.3.1 Stacked Autoencoders -- 12.2.3.2 Deep Belief Network -- 12.2.3.3 Deep Boltzmann Machine -- 12.2.3.4 Recurrent Neural Network -- 12.2.3.5 Convolutional Neural Networks -- 12.3 Application of Deep Learning in Healthcare Systems -- 12.3.1 Medical Imaging -- 12.3.2 Bioinformatics -- 12.3.3 Medical e-Health Records -- 12.3.4 Health Monitoring -- 12.4 Challenges and Future Research Prospects -- 12.5 Conclusions -- References -- 13. Applications of Protein Nanoparticles as Drug Delivery Vehicle -- 13.1 Introduction -- 13.2 Characterization of Protein NPs -- 13.3 General Protein Used for Preparation of NPs -- 13.3.1 Albumin -- 13.3.2 Gelatin and Elastin -- 13.3.3 Gliadin and Legumin -- 13.3.4 Zein -- 13.3.5 Soy and Milk Protein -- 13.3.6 Whey Proteins -- 13.4 Factors Affecting Protein NP Preparation -- 13.5 Technique for the Preparation of Protein NPs -- 13.5.1 Coacervation/Desolvation Method -- 13.5.2 Emulsion/Solvent Extraction -- 13.5.3 Complex Coacervation -- 13.5.4 Electrospray -- 13.6 Toxicity of NPs -- 13.7 Protein NP as Diagnostic Tool -- 13.8 Protein NPs as Therapeutics -- 13.8.1 NPs for Anticancer Therapy. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 13.8.2 NPs for Immunomodulation -- 13.8.3 NPs for Ocular Disorders -- 13.8.4 NPs Reported for Other Therapies -- 13.9 Conclusion -- References -- 14. Exploring Food Domain Using Deep Neural Networks -- 14.1 Introduction -- 14.2 Challenges -- 14.3 Related Work -- 14.4 Methodology -- 14.4.1 Dataset -- 14.4.2 CNN Machine Learning Algorithm -- 14.4.3 R Packages Used -- 14.4.3.1 Keras -- 14.4.3.2 CARET -- 14.4.3.3 Shiny -- 14.5 Result -- 14.6 User Interface -- 14.7 Conclusion -- References -- Index. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | The book provides details of applying intelligent mining techniques for extracting & pre-processing medical data from various sources, for application-based healthcare research. Moreover, different datasets are used, thereby exploring real-world case studies related to medical informatics. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Artificial intelligence-Medical applications. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Medical informatics. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Rathi, Megha. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Sinha, Adwitiya |
Title | Smart Healthcare Systems |
Place, publisher, and date of publication | Milton : CRC Press LLC,c2019 |
International Standard Book Number | 9780367030568 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5838740">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5838740</a> |
Public note | Click to View |
No items available.