ORPP logo

Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two. (Record no. 10471)

MARC details
000 -LEADER
fixed length control field 04870nam a22004693i 4500
001 - CONTROL NUMBER
control field EBC5770285
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240724113716.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240724s2019 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781470450694
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781470435431
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5770285
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5770285
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1096296267
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QC174.17.S3 .K377 2019
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 530.12/4
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Karpeshina, Yulia.
245 10 - TITLE STATEMENT
Title Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Providence :
Name of producer, publisher, distributor, manufacturer American Mathematical Society,
Date of production, publication, distribution, manufacture, or copyright notice 2019.
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice ©2019.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (152 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Memoirs of the American Mathematical Society Series ;
Volume/sequential designation v.258
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Preliminary Remarks -- Chapter 3. Step I -- 3.1. The Operator ⁽¹⁾ -- 3.2. Perturbation Formulas -- 3.3. Geometric Considerations -- 3.4. Isoenergetic Surface for the Operator ⁽¹⁾ -- 3.5. Preparation for Step II. Construction of the Second Nonresonant Set -- Chapter 4. Step II -- 4.1. The Operator ⁽²⁾. Perturbation Formulas -- 4.2. Isoenergetic Surface for the Operator ⁽²⁾ -- 4.3. Preparation for Step III - Geometric Part. Properties of the Quasiperiodic Lattice -- 4.4. Preparation for Step III - Analytic Part -- Chapter 5. Step III -- 5.1. The Operator ⁽³⁾. Perturbation Formulas -- 5.2. Isoenergetic Surface for the Operator ⁽³⁾ -- 5.3. Preparation for Step IV -- Chapter 6. STEP IV -- 6.1. The Operator ⁽⁴⁾. Perturbation Formulas -- 6.2. Isoenergetic Surface for the Operator ⁽⁴⁾ -- Chapter 7. Induction -- 7.1. Inductive formulas for _{ } -- 7.2. Preparation for Step +1, ≥4 -- 7.3. The Operator ⁽ⁿ⁺¹⁾. Perturbation Formulas -- 7.4. Isoenergetic Surface for the Operator ⁽ⁿ⁺¹⁾ -- Chapter 8. Isoenergetic Sets. Generalized Eigenfunctions of -- 8.1. Construction of the Limit-Isoenergetic Set -- 8.2. Generalized Eigenfunctions of -- Chapter 9. Proof of Absolute Continuity of the Spectrum -- 9.1. The Operators _{ }( _{ }'), _{ }'⊂ _{ } -- 9.2. Sets _{∞} and _{∞, } -- 9.3. Projections ( _{∞, }) -- 9.4. Proof of Absolute Continuity -- Chapter 10. Appendices -- 10.1. Appendix 1. Proof of Lemma 3.12 -- 10.2. Appendix 2. Proof of Lemma 3.13 -- 10.3. Appendix 3 -- 10.4. Appendix 4 -- 10.5. Appendix 5 -- 10.6. Appendix 6 -- 10.7. Appendix 7 -- 10.8. Appendix 8. An Application of Bezout's Theorem -- 10.9. Appendix 9. On the Proof of Geometric Lemmas Allowing to Deal with Clusters instead of Boxes -- 10.10. Appendix 10 -- Chapter 11. List of main notations.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Bibliography -- Back Cover.
520 ## - SUMMARY, ETC.
Summary, etc. The authors consider a Schrödinger operator H=-\Delta +V(\vec x) in dimension two with a quasi-periodic potential V(\vec x). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves e^i\langle \vec \varkappa ,\vec x\rangle in the high energy region. Second, the isoenergetic curves in the space of momenta \vec \varkappa corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results. The result is based on a previous paper on the quasiperiodic polyharmonic operator (-\Delta )^l+V(\vec x), l>1. Here the authors address technical complications arising in the case l=1. However, this text is self-contained and can be read without familiarity with the previous paper.
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on publisher supplied metadata and other sources.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Schrödinger equation.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Shterenberg, Roman.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Karpeshina, Yulia
Title Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two
Place, publisher, and date of publication Providence : American Mathematical Society,c2019
International Standard Book Number 9781470435431
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Memoirs of the American Mathematical Society Series
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5770285">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5770285</a>
Public note Click to View

No items available.

© 2024 Resource Centre. All rights reserved.