Liquid Acquisition Devices for Advanced in-Space Cryogenic Propulsion Systems. (Record no. 103504)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 11213nam a22004933i 4500 |
001 - CONTROL NUMBER | |
control field | EBC4202828 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | MiAaPQ |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240729130146.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240724s2015 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9780128039908 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9780128039892 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC4202828 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL4202828 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaPaEBR)ebr11135960 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (CaONFJC)MIL938657 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)935913366 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | TP482 |
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 621.59 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Hartwig, Jason William. |
245 10 - TITLE STATEMENT | |
Title | Liquid Acquisition Devices for Advanced in-Space Cryogenic Propulsion Systems. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | San Diego : |
Name of producer, publisher, distributor, manufacturer | Elsevier Science & Technology, |
Date of production, publication, distribution, manufacture, or copyright notice | 2015. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | ©2016. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (489 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Front Cover -- Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems -- Copyright -- Dedication -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1: Introduction -- 1.1. The Flexible Path -- 1.2. Fundamental Cryogenic Fluids -- 1.3. Motivation for Cryogenic Propulsion Technology Development -- 1.4. Existing Challenges with Cryogenic Propellants -- 1.5. Cryogenic Fluid Management Subsystems -- 1.6. Future Cryogenic Fluid Management Applications -- 1.6.1. In-Space Cryogenic Engines -- 1.6.2. In-Space Cryogenic Fuel Depots -- 1.7. Purpose of Work and Overview by Chapter -- Chapter 2: Background and Historical Review -- 2.1. Propellant Management Device Purpose -- 2.2. Other Types of Propellant Management Devices -- 2.3. Vanes -- 2.3.1. Design Concept, Basic Flow Physics, and Principle of Operation -- 2.3.2. Advantages and Disadvantages -- 2.3.3. Storable Propellant Historical Examples -- 2.3.3.1. Space Experiments -- 2.3.3.2. Vehicles and Missions -- 2.4. Sponges -- 2.4.1. Design Concept, Basic Flow Physics, and Principle of Operation -- 2.4.2. Advantages and Disadvantages -- 2.4.3. Storable Propellant Historical Examples -- 2.4.3.1. Space Experiments -- 2.4.3.2. Vehicles and Missions -- 2.5. Screen Channel Liquid Acquisition Devices -- 2.5.1. Design Concept, Basic Flow Physics, and Principle of Operation -- 2.5.2. Mesh and Metal Type -- 2.5.3. Advantages and Disadvantages -- 2.5.4. Storable Propellant Historical Examples -- 2.5.4.1. Space Experiments -- 2.5.4.2. Vehicles and Missions -- 2.5.5. Cryogenic Propellant Historical Examples -- 2.6. Propellant Management Device Combinations -- 2.7. NASA's Current Needs -- Chapter 3: Influential Factors and Physics-Based Modeling of Liquid Acquisition Devices -- 3.1. 1-g One Dimensional Simplified Pressure Drop Model -- 3.2. The Room Temperature Bubble Point Pressure. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 3.2.1. Assumptions -- 3.2.2. Bubble Point Model Derivation -- 3.2.3. Types of Bubble Point Experiments -- 3.2.4. Surface Tension Model -- 3.2.5. Specifying the Effective Pore Diameter -- 3.2.6. Previously Reported Bubble Points -- 3.3. Hydrostatic Pressure Drop -- 3.4. Flow-Through-Screen Pressure Drop -- 3.4.1. Model Derivation -- 3.4.2. Model Parameters and Flow-Through-Screen Experiment -- 3.4.3. Historical Data and Trends -- 3.5. Frictional and Dynamic Pressure Drop -- 3.6. Wicking Rate -- 3.6.1. Model Derivation -- 3.6.2. Wicking Rate Experiment -- 3.6.3. Historical Data and Trends -- 3.7. Screen Compliance -- 3.7.1. Model Derivation and Screen Compliance Experiment -- 3.7.2. Historical Data and Trends -- 3.8. Material Compatibility -- 3.9. The Room Temperature Reseal Pressure Model -- 3.9.1. Model Derivation -- 3.9.2. Historical Data and Trends -- 3.9.3. Specifying the Reseal Diameter -- 3.10. Pressurant Gas Type -- 3.11. Concluding Remarks and Implications for Cryogenic Propulsion Systems -- Chapter 4: Room Temperature Liquid Acquisition Device Performance Experiments -- 4.1. Pure Fluid Tests -- 4.1.1. Scanning Electron Microscopy Analysis -- 4.1.2. Bubble Point Experimental Setup -- 4.1.3. Bubble Point Experimental Methodology and Data Reduction -- 4.1.4. Contact Angle Measurements -- 4.1.5. Experimental Bubble Point Results -- 4.2. Binary Mixture Tests -- 4.2.1. Experimental Setup, Methodology, and Data Reduction -- 4.2.2. Theoretical Predictions -- 4.2.2.1. Liquid/Vapor Surface Tension of the Methanol/Water Mixture -- 4.2.2.2. Contact Angle Measurements -- 4.2.3. Experimental Results -- 4.2.3.1. Bubble Point Pressure -- 4.2.3.2. Critical Zisman Surface Tension -- 4.3. Reseal Pressure Tests -- 4.4. Wicking Rate Tests -- 4.5. Concluding Remarks -- Chapter 5: Parametric Analysis of the Liquid Hydrogen and Nitrogen Bubble Point Pressure. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Chapter Outline -- 5.1. Test Purpose and Motivation -- 5.2. Experimental Design -- 5.2.1. Test Article and Facility -- 5.2.2. Instrumentation and Data Acquisition -- 5.2.3. Data Reduction -- 5.2.4. Test Matrix -- 5.3. Experimental Methodology -- 5.4. Experimental Results and Discussion -- 5.4.1. Screen Weave Dependence -- 5.4.2. Liquid Dependence -- 5.4.3. Liquid Temperature Dependence -- 5.4.4. Liquid Pressure Dependence -- 5.4.5. Pressurant Gas Dependence -- 5.5. Concluding Remarks -- Chapter 6: High-Pressure Liquid Oxygen Bubble Point Experiments -- 6.1. Test Purpose and Motivation -- 6.2. Experimental Design -- 6.2.1. Test Article and Facility -- 6.2.2. Instrumentation and Data Acquisition -- 6.2.3. Test Matrix -- 6.3. Experimental Methodology -- 6.4. Experimental Results and Discussion -- 6.4.1. Test Conditions -- 6.4.2. Elevated Temperature Dependence -- 6.4.3. Liquid Subcooling and Pressurant Gas Dependence -- 6.4.4. Heat Transfer Effects at Elevated Temperature -- 6.4.5. Analysis of Videos -- 6.5. Concluding Remarks -- Chapter 7: High-Pressure Liquid Methane Bubble Point Experiments -- 7.1. Test Purpose and Motivation -- 7.2. Experimental Design -- 7.2.1. Modifications to Facility, Test Article, and Instrumentation -- 7.2.2. Test Matrix -- 7.3. Experimental Results and Discussion -- 7.3.1. Test Conditions -- 7.3.2. Elevated Temperature Dependence -- 7.3.3. Liquid Subcooling and Pressurant Gas Dependence -- 7.4. Thermal Analysis -- 7.4.1. Heat Transfer at Breakdown -- 7.4.2. Interfacial Temperature -- 7.4.3. Condensation and Evaporation Mass Flux -- 7.4.3.1. Temperature and Pressure Data-Based -- 7.4.3.2. Kinetic Theory -- 7.4.4. Screen Reynolds Number -- 7.4.5. Heat Conduction into Liquid -- 7.5. Concluding Remarks -- Chapter 8: Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic Liquid Acquisition Devices. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 8.1. Test Purpose and Motivation -- 8.2. Design Modifications -- 8.3. Experimental Methodology -- 8.4. Test Matrix -- 8.5. Warm Pressurant Gas Liquid Hydrogen Experiments -- 8.6. Warm Pressurant Gas Liquid Nitrogen Experiments -- 8.7. Concluding Remarks -- Chapter 9: Full-Scale Liquid Acquisition Device Outflow Tests in Liquid Hydrogen -- 9.1. Test Purpose and Motivation -- 9.2. Test Plan -- 9.3. Facility and Test Article -- 9.4. Horizontal Liquid Acquisition Device Tests -- 9.4.1. Test Description -- 9.4.2. Research Hardware -- 9.4.3. Instrumentation and Test Methodology -- 9.4.4. Experimental Results and Comparison to Model -- 9.5. Flow-Through-Screen Tests -- 9.5.1. Test Description -- 9.5.2. Research Hardware -- 9.5.3. Instrumentation -- 9.5.4. Test Methodology -- 9.5.5. Experimental Results and Comparison to Model -- 9.6. 1-g Inverted Vertical Liquid Acquisition Device Outflow Tests -- 9.6.1. Test Description -- 9.6.2. Research Hardware -- 9.6.2.1. Standard 325 x 2300 Channel -- 9.6.2.2. Thermodynamic Vent System Cooled 325 x 2300 Channel -- 9.6.3. Thermodynamic Vent System Heat Exchanger Analysis -- 9.6.4. Instrumentation -- 9.6.5. Test Methodology -- 9.6.6. Test Matrix -- 9.6.7. One-Dimensional Steady State Pressure Drop Model General Trends -- 9.6.8. Experimental Results -- 9.6.8.1. Screen Channel Bubble Point Tests in Isopropyl Alcohol -- 9.6.8.2. Standard 325x2300 Channel Performance -- 9.6.8.3. Thermodynamic Vent System Cooled 325x2300 Channel Performance -- 9.6.8.4. Thermodynamic Vent System Efficiency -- 9.6.8.5. Subcooling Effect -- 9.6.9. Comparison to One-Dimensional Model -- 9.7. Concluding Remarks -- Chapter 10: The Bubble Point Pressure Model for Cryogenic Propellants -- 10.1. Current Model Limitations -- 10.2. Summary of Data -- 10.3. Room Temperature Pore Diameter Model -- 10.3.1. Model -- 10.3.2. Maximum Bubble Point Pressure. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 10.4. Pressurant Gas Model -- 10.5. Liquid Subcooling Model -- 10.6. Warm Pressurant Gas Model -- 10.7. Concluding Remarks -- Chapter 11: The Reseal Point Pressure Model for Cryogenic Propellants -- 11.1. Current Model Limitations -- 11.2. Summary of Data -- 11.3. Room Temperature Reseal Diameter Model -- 11.4. Pressurant Gas Model -- 11.5. Liquid Subcooling Model -- 11.6. Warm Pressurant Gas Model -- 11.7. Model Summary and Performance -- 11.8. Concluding Remarks -- Chapter 12: Analytical Model for Steady Flow through a Porous Liquid Acquisition Device Channel -- Chapter Outline -- 12.1. One-Dimensional Pressure Drop Model Drawbacks -- 12.2. Evolution of the Solution Method -- 12.3. Analytical Model Formulation -- 12.3.1. Assumptions -- 12.3.2. Governing Equations -- 12.3.3. Method of Solution -- 12.4. Model Results, Sensitivities, and Comparison to One-Dimensional Model -- 12.4.1. Validation of Laminar Channel Flow Assumption -- 12.4.2. Model Comparison to Liquid Oxygen Horizontal Liquid Acquisition Device Experiments -- 12.4.3. Model Comparison to Liquid Hydrogen 1-g Inverted Vertical Outflow Experiments -- 12.5. Dynamic Bubble Point Model -- 12.6. Convective Cooling of the Liquid Acquisition Device Screen -- 12.7. Concluding Remarks -- Chapter 13: Optimal Liquid Acquisition Device Screen Weave for a Liquid Hydrogen Fuel Depot -- 13.1. Background and Mission Requirements -- 13.2. Bubble Point Pressure and Flow-through-Screen Pressure Drop -- 13.3. Critical Mass Flux -- 13.4. Minimum Bubble Point -- 13.5. Minimum Screen Area -- 13.6. Other Considerations -- 13.7. Channel Number and Size -- 13.8. Concluding Remarks -- Chapter 14: Optimal Propellant Management Device for a Small-Scale Liquid Hydrogen Propellant Tank -- 14.1. Background and Mission Requirements -- 14.2. Analytical Screen Channel Flow Model in Microgravity. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 14.2.1. Extension of 1-g Model to Microgravity. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Space vehicles--Propulsion systems. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Hartwig, Jason William |
Title | Liquid Acquisition Devices for Advanced in-Space Cryogenic Propulsion Systems |
Place, publisher, and date of publication | San Diego : Elsevier Science & Technology,c2015 |
International Standard Book Number | 9780128039892 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4202828">https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4202828</a> |
Public note | Click to View |
No items available.