Modern Aerodynamic Methods for Direct and Inverse Applications.
Chin, Wilson C.
Modern Aerodynamic Methods for Direct and Inverse Applications. - 1st ed. - 1 online resource (443 pages)
Cover -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- 1 Basic Concepts, Challenges and Methods -- 1.1 Governing Equations - An Unconventional Synopsis -- 1.2 Fundamental "Analysis" or "Forward Modeling" Ideas -- 1.3 Basic "Inverse" or "Indirect Modeling" Ideas -- 1.4 Literature Overview and Modeling Issues -- 1.5 References -- 2 Computational Methods: Subtleties, Approaches and Algorithms -- 2.1 Coding Suggestions and Baseline Solutions -- 2.1.1 Presentation Approach -- 2.1.2 Programming Exercises -- 2.1.3 Model Extensions and Challenges -- 2.2 Finite Difference Methods for Simple Planar Flows -- 2.2.1 Finite Differences - Basic Concepts -- 2.2.2 Formulating Steady Flow Problems -- 2.2.3 Steady Flow Problems -- 2.2.4 Wells and Internal Boundaries -- 2.2.5 Point Relaxation Methods -- 2.2.6 Observations on Relaxation Methods -- 2.3 Examples - Analysis, Direct or Forward Applications -- 2.3.1 Example 1 - Thickness Solution, Centered Slit in Box -- 2.3.2 Example 2 - Half-Space Thickness Solution -- 2.3.3 Example 3 - Centered Symmetric Wedge Flow -- 2.3.4 Example 4 - General Solution with Lift, Centered Slit -- 2.3.5 Example 5 - Transonic Supercritical Airfoil with Type-Dependent Differencing Solution, Subsonic, Mixed Flow and Supersonic -- 2.3.6 Example 6 - Three-Dimensional, Thickness-Only, Finite, Half-Space Solution -- 2.4 Examples - Inverse or Indirect Applications -- 2.4.1 Example 1 - Constant Pressure Specification and Symmetric Thin Ellipse -- 2.4.2 Example 2 - Inverse Problem, Pressure Specification, Centered Slit, Trailing Edge Closed vs Opened -- 2.4.3 Example 3 - Inverse Problem, Pressure Specification, Three-Dimensional Half-Space, Closed Trailing Edge, Nonlifting Symmet -- 3 Advanced Physical Models and Mathematical Approaches -- 3.1 Nonlinear Formulation for Low-Frequency Transonic Flow. 3.1.1 Introduction -- 3.1.2 Analysis -- 3.1.3 Discussion and Summary -- 3.1.4 References -- 3.2 Effect of Frequency in Unsteady Transonic Flow -- 3.2.1 Introduction -- 3.2.2 Numerical Procedure -- 3.2.3 Results -- 3.2.4 Concluding Remarks -- 3.2.5 References -- 3.3 Harmonic Analysis of Unsteady Transonic Flow -- 3.3.1 Introduction -- 3.3.2 Analytical and Numerical Approach -- 3.3.3 Calculated Results -- 3.3.4 Discussion and Closing Remarks -- 3.3.5 References -- 3.4 Supersonic Wave Drag for Nonplanar Singularity Distributions -- 3.4.1 Introduction -- 3.4.2 Analysis -- 3.4.3 Summary -- 3.4.4 References -- 3.5 Supersonic Wave Drag for Planar Singularity Distributions -- 3.5.1 Introduction -- 3.5.2 Analysis -- 3.5.3 Concluding Remarks -- 3.5.4 References -- 3.6 Pseudo-Transonic Equation with a Diffusion Term -- 3.6.1 Introduction -- 3.6.2 Analysis -- 3.6.3 Summary -- 3.6.4 References -- 3.7 Numerical Solution for Viscous Transonic Flow -- 3.7.1 Introduction -- 3.7.2 Analysis -- 3.7.3 Numerical Approach -- 3.7.4 Sample Calculation -- 3.7.5 Discussion -- 3.7.6 References -- 3.8 Type-Independent Solutions for Mixed Subsonic and Supersonic Compressible Flow -- 3.8.1 lntroduction -- 3.8.2 Discussion -- 3.8.3 Numerical Approaches -- 3.8.3.1 Horizontal Line Relaxation -- 3.8.3.2 Vertical Column Relaxation -- 3.8.4 Summary -- 3.8.5 References -- 3.9 Algorithm for Inviscid Compressible Flow Using the Viscous Transonic Equation -- 3.9.1 Introduction -- 3.9.2 Analysis -- 3.9.3 Sample Calculations -- 3.9.4 Summary and Conclusions -- 3.9.5 References -- 3.10 Inviscid Parallel Flow Stability with Nonlinear Mean Profile Distortion -- 3.10.1 Introduction -- 3.10.2 Analysis -- 3.10.3 Discussion and Conclusion -- 3.10.4 References -- 3.11 Aerodynamic Stability of Inviscid Shear Flow Over Flexible Membranes -- 3.11.1 Introduction -- 3.11.2 Analysis. 3.11.3 Specific Examples -- 3.11.4 Discussion and Concluding Remarks -- 3.11.5 References -- 3.12 Goethert's Rule with an Improved Boundary Condition -- 3.12.1 Introduction -- 3.12.2 Analysis -- 3.12.3 Summary -- 3.12.4 References -- 3.13 Some Singular Aspects of Three-Dimensional Transonic Flow -- 3.13.1 Analysis -- 3.13.2 Discussion and Summary -- 3.13.3 References -- 4 General Analysis and Inverse Methods for Aerodynamic Modeling -- 4.1 On the Design of Thin Subsonic Airfoils -- 4.1.1 Introduction -- 4.1.2 Analysis -- 4.1.3 First-Order Problem -- 4.1.4 Second-Order Problem -- 4.1.5 Discussion and Conclusion -- 4.1.6 References -- 4.2 Airfoil Design in Subcritical and Supercritical Flows -- 4.2.1 Introduction -- 4.2.2 Streamfunction Formulation -- 4.2.3 Numerical Procedure -- 4.2.4 Calculated Results -- 4.2.5 Discussion and Closing Remarks -- 4.2.6 References -- 4.3 Direct Approach to Aerodynamic Inverse Problems -- 4.3.1 Introduction -- 4.3.2 Theory and Examples -- 4.3.2.1 Constant Density Planar Flows -- 4.3.2.2 Constant Density Flows Past Three-Dimensional Finite Wings -- 4.3.2.3 Compressible Flows Past Finite Wings -- 4.3.2.4 Flows in Fans and Cascades -- 4.3.2.5 Axisymmetric Compressible Flows -- 4.3.3 Sample Calculations -- 4.3.4 Closing Remarks -- 4.3.5 References -- 4.4 Superpotential Solution for Jet Engine External Potential and Internal Rotational Flow Interaction -- 4.4.1 Introduction -- 4.4.2 Rotational Flow Equations -- 4.4.3 The Linearized Problem -- 4.4.4 Application to Jet-Engine External Potential and Internal Rotational Flow Interaction -- 4.4.5 Calculated Results and Closing Discussion -- 4.4.6 References -- 4.5 Thin Airfoil Theory for Planar Inviscid Shear Flow -- 4.5.1 Introduction -- 4.5.2 Planar Flows With Constant Vorticity -- 4.5.2.1 Planar Flows: Inverse Problems -- 4.5.2.2 Planar Flows: Direct Formulations. 4.5.2.3 Some Planar Analytical Solutions -- 4.5.2.4 Analogy To Ringwing Potentlal Flows -- 4.5.2.5 Source and Vortex Interactlons for Ringwings -- 4.5.3 Airfoils in General Parallel Shear Flow -- 4.5.4 Numerical Results -- 4.5.5 Closing Remarks -- 4.5.6 References -- 4.5.7 Appendix I, Three-Dimensional Constant Density Flows -- 4.5.8 Appendix II, Planar Compressible Shear Flow of a Gas -- 4.6 Class of Shock-free Airfoils Producing the Same Surface Pressure -- 4.6.1 Introduction -- 4.6.2 Analysis -- 4.6.3 Discussion and Conclusion -- 4.6.4 References -- 4.7 Engine Power Simulation for Transonic Flow-Through Nacelles -- 4.7.1 Introduction -- 4.7.2 Analytical and Numerical Approach -- 4.7.3 Numerical Results and Closing Remarks -- 4.7.4 References -- 4.8 Inviscid Steady Flow Past Turbofan Mixer Nozzles -- 4.8.1 Introduction -- 4.8.2 Analytical Formulation -- 4.8.3 Calculated Results and Closing Remarks -- 4.8.4 References -- 5 Engine and Airframe Integration Methods -- 5.1 Big Picture Revisited -- 5.2 Engine Component Analysis -- 5.3 Engine Power Simulation Using Actuator Disks -- 5.4 Mixers and Supersonic Nozzles -- 5.5 References -- Cumulative References -- Index -- About the Author -- EULA.
9781119580850
Aerodynamics.
Electronic books.
TL570 .C456 2019
Modern Aerodynamic Methods for Direct and Inverse Applications. - 1st ed. - 1 online resource (443 pages)
Cover -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- 1 Basic Concepts, Challenges and Methods -- 1.1 Governing Equations - An Unconventional Synopsis -- 1.2 Fundamental "Analysis" or "Forward Modeling" Ideas -- 1.3 Basic "Inverse" or "Indirect Modeling" Ideas -- 1.4 Literature Overview and Modeling Issues -- 1.5 References -- 2 Computational Methods: Subtleties, Approaches and Algorithms -- 2.1 Coding Suggestions and Baseline Solutions -- 2.1.1 Presentation Approach -- 2.1.2 Programming Exercises -- 2.1.3 Model Extensions and Challenges -- 2.2 Finite Difference Methods for Simple Planar Flows -- 2.2.1 Finite Differences - Basic Concepts -- 2.2.2 Formulating Steady Flow Problems -- 2.2.3 Steady Flow Problems -- 2.2.4 Wells and Internal Boundaries -- 2.2.5 Point Relaxation Methods -- 2.2.6 Observations on Relaxation Methods -- 2.3 Examples - Analysis, Direct or Forward Applications -- 2.3.1 Example 1 - Thickness Solution, Centered Slit in Box -- 2.3.2 Example 2 - Half-Space Thickness Solution -- 2.3.3 Example 3 - Centered Symmetric Wedge Flow -- 2.3.4 Example 4 - General Solution with Lift, Centered Slit -- 2.3.5 Example 5 - Transonic Supercritical Airfoil with Type-Dependent Differencing Solution, Subsonic, Mixed Flow and Supersonic -- 2.3.6 Example 6 - Three-Dimensional, Thickness-Only, Finite, Half-Space Solution -- 2.4 Examples - Inverse or Indirect Applications -- 2.4.1 Example 1 - Constant Pressure Specification and Symmetric Thin Ellipse -- 2.4.2 Example 2 - Inverse Problem, Pressure Specification, Centered Slit, Trailing Edge Closed vs Opened -- 2.4.3 Example 3 - Inverse Problem, Pressure Specification, Three-Dimensional Half-Space, Closed Trailing Edge, Nonlifting Symmet -- 3 Advanced Physical Models and Mathematical Approaches -- 3.1 Nonlinear Formulation for Low-Frequency Transonic Flow. 3.1.1 Introduction -- 3.1.2 Analysis -- 3.1.3 Discussion and Summary -- 3.1.4 References -- 3.2 Effect of Frequency in Unsteady Transonic Flow -- 3.2.1 Introduction -- 3.2.2 Numerical Procedure -- 3.2.3 Results -- 3.2.4 Concluding Remarks -- 3.2.5 References -- 3.3 Harmonic Analysis of Unsteady Transonic Flow -- 3.3.1 Introduction -- 3.3.2 Analytical and Numerical Approach -- 3.3.3 Calculated Results -- 3.3.4 Discussion and Closing Remarks -- 3.3.5 References -- 3.4 Supersonic Wave Drag for Nonplanar Singularity Distributions -- 3.4.1 Introduction -- 3.4.2 Analysis -- 3.4.3 Summary -- 3.4.4 References -- 3.5 Supersonic Wave Drag for Planar Singularity Distributions -- 3.5.1 Introduction -- 3.5.2 Analysis -- 3.5.3 Concluding Remarks -- 3.5.4 References -- 3.6 Pseudo-Transonic Equation with a Diffusion Term -- 3.6.1 Introduction -- 3.6.2 Analysis -- 3.6.3 Summary -- 3.6.4 References -- 3.7 Numerical Solution for Viscous Transonic Flow -- 3.7.1 Introduction -- 3.7.2 Analysis -- 3.7.3 Numerical Approach -- 3.7.4 Sample Calculation -- 3.7.5 Discussion -- 3.7.6 References -- 3.8 Type-Independent Solutions for Mixed Subsonic and Supersonic Compressible Flow -- 3.8.1 lntroduction -- 3.8.2 Discussion -- 3.8.3 Numerical Approaches -- 3.8.3.1 Horizontal Line Relaxation -- 3.8.3.2 Vertical Column Relaxation -- 3.8.4 Summary -- 3.8.5 References -- 3.9 Algorithm for Inviscid Compressible Flow Using the Viscous Transonic Equation -- 3.9.1 Introduction -- 3.9.2 Analysis -- 3.9.3 Sample Calculations -- 3.9.4 Summary and Conclusions -- 3.9.5 References -- 3.10 Inviscid Parallel Flow Stability with Nonlinear Mean Profile Distortion -- 3.10.1 Introduction -- 3.10.2 Analysis -- 3.10.3 Discussion and Conclusion -- 3.10.4 References -- 3.11 Aerodynamic Stability of Inviscid Shear Flow Over Flexible Membranes -- 3.11.1 Introduction -- 3.11.2 Analysis. 3.11.3 Specific Examples -- 3.11.4 Discussion and Concluding Remarks -- 3.11.5 References -- 3.12 Goethert's Rule with an Improved Boundary Condition -- 3.12.1 Introduction -- 3.12.2 Analysis -- 3.12.3 Summary -- 3.12.4 References -- 3.13 Some Singular Aspects of Three-Dimensional Transonic Flow -- 3.13.1 Analysis -- 3.13.2 Discussion and Summary -- 3.13.3 References -- 4 General Analysis and Inverse Methods for Aerodynamic Modeling -- 4.1 On the Design of Thin Subsonic Airfoils -- 4.1.1 Introduction -- 4.1.2 Analysis -- 4.1.3 First-Order Problem -- 4.1.4 Second-Order Problem -- 4.1.5 Discussion and Conclusion -- 4.1.6 References -- 4.2 Airfoil Design in Subcritical and Supercritical Flows -- 4.2.1 Introduction -- 4.2.2 Streamfunction Formulation -- 4.2.3 Numerical Procedure -- 4.2.4 Calculated Results -- 4.2.5 Discussion and Closing Remarks -- 4.2.6 References -- 4.3 Direct Approach to Aerodynamic Inverse Problems -- 4.3.1 Introduction -- 4.3.2 Theory and Examples -- 4.3.2.1 Constant Density Planar Flows -- 4.3.2.2 Constant Density Flows Past Three-Dimensional Finite Wings -- 4.3.2.3 Compressible Flows Past Finite Wings -- 4.3.2.4 Flows in Fans and Cascades -- 4.3.2.5 Axisymmetric Compressible Flows -- 4.3.3 Sample Calculations -- 4.3.4 Closing Remarks -- 4.3.5 References -- 4.4 Superpotential Solution for Jet Engine External Potential and Internal Rotational Flow Interaction -- 4.4.1 Introduction -- 4.4.2 Rotational Flow Equations -- 4.4.3 The Linearized Problem -- 4.4.4 Application to Jet-Engine External Potential and Internal Rotational Flow Interaction -- 4.4.5 Calculated Results and Closing Discussion -- 4.4.6 References -- 4.5 Thin Airfoil Theory for Planar Inviscid Shear Flow -- 4.5.1 Introduction -- 4.5.2 Planar Flows With Constant Vorticity -- 4.5.2.1 Planar Flows: Inverse Problems -- 4.5.2.2 Planar Flows: Direct Formulations. 4.5.2.3 Some Planar Analytical Solutions -- 4.5.2.4 Analogy To Ringwing Potentlal Flows -- 4.5.2.5 Source and Vortex Interactlons for Ringwings -- 4.5.3 Airfoils in General Parallel Shear Flow -- 4.5.4 Numerical Results -- 4.5.5 Closing Remarks -- 4.5.6 References -- 4.5.7 Appendix I, Three-Dimensional Constant Density Flows -- 4.5.8 Appendix II, Planar Compressible Shear Flow of a Gas -- 4.6 Class of Shock-free Airfoils Producing the Same Surface Pressure -- 4.6.1 Introduction -- 4.6.2 Analysis -- 4.6.3 Discussion and Conclusion -- 4.6.4 References -- 4.7 Engine Power Simulation for Transonic Flow-Through Nacelles -- 4.7.1 Introduction -- 4.7.2 Analytical and Numerical Approach -- 4.7.3 Numerical Results and Closing Remarks -- 4.7.4 References -- 4.8 Inviscid Steady Flow Past Turbofan Mixer Nozzles -- 4.8.1 Introduction -- 4.8.2 Analytical Formulation -- 4.8.3 Calculated Results and Closing Remarks -- 4.8.4 References -- 5 Engine and Airframe Integration Methods -- 5.1 Big Picture Revisited -- 5.2 Engine Component Analysis -- 5.3 Engine Power Simulation Using Actuator Disks -- 5.4 Mixers and Supersonic Nozzles -- 5.5 References -- Cumulative References -- Index -- About the Author -- EULA.
9781119580850
Aerodynamics.
Electronic books.
TL570 .C456 2019