Halophytes and Climate Change : Adaptive Mechanisms and Potential Uses.
Hasanuzzaman, Mirza.
Halophytes and Climate Change : Adaptive Mechanisms and Potential Uses. - 1st ed. - 1 online resource (399 pages)
Intro -- Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses -- Copyright -- Contents -- List of Contributors -- Preface -- References -- Section I Ecophysiology -- 1 Defining Halophytes: a Conceptual and Historical Approach in an Ecological Frame -- 1.1 Historical and Semantic Evolution of Terms -- 1.2 Halophytes: Starting to Define Them as an Ecological Group of Plants -- 1.3 Halophytes and Physiological Drought in Soil -- 1.4 Conclusion -- References -- 2 Habitats of Halophytes -- 2.1 Introduction -- 2.1.1 Mangroves -- 2.1.2 Sand and cliff shorelines in the tropics -- 2.1.3 Salt deserts and semi-deserts -- 2.1.4 Sargasso Sea -- 2.1.5 Temperate and boreal zones -- 2.1.5.1 Mudflats (tidal and wind flats) and salt marshes -- 2.1.5.2 Kelp forests and beds -- 2.1.5.3 Salt lakes and salt steppes of the Pannonian Region (Hungarian: Puszta (Pannonian Steppe), Alföld (Great Hungarian Plain)) -- 2.1.5.4 Wash fringes (wash fringe or wash margin -- German: Spülsaum, Strandline -- Polish: kidzina) -- 2.1.5.5 Isolated inland saline grasslands outside the Pannon and Pontic regions -- 2.1.6 Anthropogenic Salinization -- 2.1.6.1 Ruderal communities of salt-tolerant species in industrial regions -- 2.2 Halophyte-based Agriculture, Silviculture and Mariculture -- 2.3 Habitats of Halophytes as Natural Laboratories for Ecologists and Physiologists -- Acknowledgements -- References -- 3 Intra-habitat Variability of Halophytic Flora of North-west India -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 Floristic surveys -- 3.2.2 Digestion -- 3.2.3 Sodium (Na +) and potassium (K +) estimation -- 3.2.4 Calcium (Ca 2+) and magnesium (Mg 2+) -- 3.2.4.1 Reagents -- 3.2.4.2 Procedure -- 3.2.4.3 Determination of calcium -- 3.2.4.4 Calculation for calcium -- 3.2.4.5 Calculation for magnesium -- 3.2.5 Sulfate -- 3.2.5.1 Digestion for sulfate -- 3.2.5.2 Reagent. 3.2.5.3 Procedure -- 3.2.5.4 Calculation -- 3.2.6 Chloride (Cl −) -- 3.2.6.1 Digestion -- 3.2.7 TDS -- 3.2.8 Ash content -- 3.2.9 SAR -- 3.2.9.1 Calculation -- 3.2.10 pH -- 3.2.11 ECe -- 3.3 Results -- 3.3.1 Magnitude of plant growth -- 3.3.2 Composition of the rhizospheric soil -- 3.3.3 Ionic accumulation in plants -- 3.3.4 Species selection for control condition studies -- 3.4 Concluding Remarks -- Acknowledgements -- References -- 4 Halophytic Vegetation in South-east Europe: Classification, Conservation and Ecogeographical Patterns -- 4.1 Introduction -- 4.2 Review of Existing Databases of Halophytic Vegetation -- 4.3 Main Saline Habitats in Europe -- 4.4 Basic Characteristics and Classification of European Halophytic Vegetation -- 4.4.1 Inland halophytic vegetation: examples of central and south-east European saline habitats -- 4.4.1.1 Annual succulent vegetation of extreme salt-rich soils (Thero-Salicornietea) -- 4.4.1.2 Saline steppe grasslands (Festuco-Puccinellietea) -- 4.4.1.3 Vegetation of slightly salt-affected soils (Molinio-Arrhenatheretea and Phragmito-Magnocaricetea) -- 4.4.2 Coastal halophytic vegetation: examples of south-east European and Adriatic maritime habitats -- 4.5 Main Threats and Conservation of Saline Habitats -- References -- 5 South African Salt Marshes: Ecophysiology and Ecology in the Context of Climate Change -- 5.1 Introduction -- 5.2 Distribution of Salt Marsh in South Africa -- 5.3 Salt Marsh Zonation in South Africa -- 5.4 Climate Change and Predicted Variability in Abiotic Stress -- 5.5 Drought Tolerance -- 5.6 Submergence Tolerance in Salt Marsh Plants -- 5.7 Salinity Tolerance in Salt Marsh Plants -- 5.8 Episodic Events as a Window into the Future -- 5.9 A Closer Look at South African Salt Marshes -- 5.10 Conclusion, Knowledge Gaps and Research Needed -- References. 6 Seagrasses, the Unique Adaptation of Angiosperms to the Marine Environment: Effect of High Carbon and Ocean Acidification on Energetics and Ion Homeostasis -- 6.1 Introduction: True Marine Higher Plants -- 6.2 Plasma Membrane Energization and Na+ Permeability in Seagrasses -- 6.3 Nutrient Uptake in Seagrasses: Energization and Kinetics -- 6.4 Ocean Acidification: Nutrient Speciation and Energetic Consequences for Seagrasses -- 6.5 Effects of Inorganic Carbon Increase on Seagrass Ion Homeostasis -- 6.6 Conclusions and Perspectives -- References -- 7 Ecophysiology of Seed Heteromorphism in Halophytes: an Overview -- 7.1 Introduction -- 7.2 Seed Heteromorphism: Definition and Occurrence -- 7.3 Seed Heteromorphism: Basis and Nature -- 7.4 Seed Heteromorphism in Dicotyledonous Halophytes -- 7.5 Seed Heteromorphism in Monocotyledonous Halophytes -- 7.6 Seed Heteromorphism in Different Habitats -- 7.7 Seed Heteromorphism: Germination and Dormancy -- 7.8 Responses of Heteromorphic Seeds to Salinity -- 7.9 Responses of Heteromorphic Seeds to Temperature -- 7.10 Responses of Heteromorphic Seeds to Light/Photoperiod -- 7.11 Carryover Effects of Heteromorphic Seeds to Progeny -- 7.12 Conclusions -- References -- 8 Salt Marsh Plants: Biological Overview and Vulnerability to Climate Change -- 8.1 Introduction -- 8.2 Plant Zonations Within Salt Marshes -- 8.3 Growth and Survival of Salt Marsh Halophytes -- 8.4 Physiological Adaptations to Saline Environments -- 8.5 Sea-level Rise and Salt Marshes -- 8.6 Macroclimatic Influences on Coastal Salt Marshes -- 8.7 Conclusions -- References -- Section II Mechanisms of Adaptation -- 9 Ion Accumulation Pattern of Halophytes -- 9.1 Introduction -- 9.2 Ion Absorption and Accumulation -- 9.2.1 Sodium absorption and accumulation -- 9.2.2 Potassium absorption and accumulation -- 9.2.3 Calcium absorption and accumulation. 9.2.4 Magnesium absorption and accumulation -- 9.2.5 Chloride absorption and accumulation -- 9.2.6 Sulfate absorption and accumulation -- 9.3 Ionic Ratios in Halophytes -- 9.4 Soil-Halophyte Relationship -- 9.5 Conclusions -- References -- 10 Morpho-anatomical Traits of Halophytic Species -- 10.1 Introduction -- 10.2 General Morphological and Anatomical Adaptation of Plants to Saline Environments -- 10.2.1 Adaptation of upper vegetative plant parts (leaves and stem) -- 10.2.2 Ion excretion: salt bladders and salt glands -- 10.2.2.1 Salt bladders -- 10.2.2.2 Salt glands -- 10.2.3 Adaptation of root -- 10.2.4 Leaf and stem succulence -- 10.3 Review of Literature on Typical and Special Morphological and Anatomical Characteristics of Halophytes -- 10.4 Examples of Different Types of Halophytes Related to Morphological and Anatomical Characteristics -- 10.4.1 Mesohalophytes -- 10.4.1.1 Atriplex littoralis -- 10.4.1.2 Puccinellia distans -- 10.4.2 Euhalophytes -- 10.4.2.1 Xeromorphic -- 10.4.2.2 Succulent -- 10.4.3 Salt-excreting plants -- 10.4.3.1 Salt bladders: Halimione portulacoides -- 10.4.3.2 Salt glands: Limonium gmelinii -- 10.5 Conclusions: Relations of Plant Structure and Soil Salinity -- References -- 11 ROS Signalling, and Antioxidant Defence Network in Halophytes -- 11.1 Introduction: the Role of ROS in Adaptation to Salinity -- 11.2 Antioxidant Defence in Halophytes and Avoidance Mechanisms Enabling Adaptation to Salinity Stress at the Cellular Level -- 11.3 ROS Signalling Network -- 11.4 Response to Salinity at the Subcellular Level -- 11.4.1 Chloroplasts -- 11.4.1.1 Strategies for avoiding ROS generation -- 11.4.1.2 The antioxidant system in chloroplasts -- 11.4.1.3 Lipids as antioxidants in the defence against oxidative stress -- 11.4.2 Mitochondrial ROS defence and salinity tolerance. 11.4.3 Peroxisomes and glyoxysomes in salinity tolerance -- 11.5 Subcellular Integration in Antioxidant Defence in Halophytes -- References -- 12 Antioxidant Defence in Halophytes under High Salinity -- 12.1 Introduction -- 12.2 Halophytes -- 12.2.1 Classification of halophytes -- 12.3 Antioxidant Defence System -- 12.3.1 ROS generation in plants -- 12.3.2 Sites of ROS production in different cell organelles -- 12.3.3 Role of ROS production and detoxification -- 12.4 Enzymatic Component -- 12.4.1 SOD -- 12.4.2 Catalase (CAT) -- 12.4.3 Ascorbate peroxidase (APX) -- 12.4.4 Peroxidase (POX) -- 12.5 Non-enzymatic Component -- 12.5.1 Ascorbic acid (AA) -- 12.5.2 Glutathione -- 12.5.3 Tocopherols -- 12.5.4 Carotenoids -- 12.5.5 Polyphenols -- 12.6 Conclusion -- References -- 13 Soil Chemical Composition Modifies the Morpho-physiological Responses of Prosopis strombulifera, a Halophyte Native to South America -- 13.1 Introduction -- 13.2 Growth Responses and Anatomical Modifications Under Na 2 SO 4 Treatment -- 13.3 Effects of Na 2 SO 4 on Ion Compartmentation -- 13.4 Effects of Na 2 SO 4 on Hydric Relations -- 13.5 Effects of Na 2 SO 4 in Compatible Solutes Production -- 13.6 Effects of Na 2 SO 4 on the Metabolomic Profile -- 13.7 Effects of Na 2 SO 4 on Endogenous Phytohormones -- 13.8 Oxidative Damage and Antioxidant System Response under Na 2 SO 4 -- 13.9 Conclusion -- References -- 14 Elimination of Salt by Recretion: Salt Glands and Gland-supported Bladders in Recretohalophytes -- 14.1 Introduction -- 14.2 Polyphyletic Evolution of Salt Glands -- 14.3 Structural Aspects -- 14.3.1 Increased anatomical complexity -- 14.3.1.1 From hydathodes to salt glands -- 14.3.1.2 Epidermal bladders versus salt hairs -- 14.3.2 Transport pathways -- 14.3.3 Gland cytology -- 14.4 Materials Recreted -- 14.5 Transport Mechanisms. 14.5.1 Electrochemical gradients, active transport and supply of energy.
This book contains current knowledge and up-to-date developments in the field of halophyte biology, ecology and potential uses. It explores the adaptive mechanisms of halophytes that allow them to grow in environments unsuitable for conventional crops and considers their role as a source of food, fuel, fodder, fibre, essential oils and medicines.
9781786394354
Halophytes.
Salt-tolerant crops.
Plants--Adaptation.
Crops and climate.
Electronic books.
QK922.H35 2018
581.4/2
Halophytes and Climate Change : Adaptive Mechanisms and Potential Uses. - 1st ed. - 1 online resource (399 pages)
Intro -- Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses -- Copyright -- Contents -- List of Contributors -- Preface -- References -- Section I Ecophysiology -- 1 Defining Halophytes: a Conceptual and Historical Approach in an Ecological Frame -- 1.1 Historical and Semantic Evolution of Terms -- 1.2 Halophytes: Starting to Define Them as an Ecological Group of Plants -- 1.3 Halophytes and Physiological Drought in Soil -- 1.4 Conclusion -- References -- 2 Habitats of Halophytes -- 2.1 Introduction -- 2.1.1 Mangroves -- 2.1.2 Sand and cliff shorelines in the tropics -- 2.1.3 Salt deserts and semi-deserts -- 2.1.4 Sargasso Sea -- 2.1.5 Temperate and boreal zones -- 2.1.5.1 Mudflats (tidal and wind flats) and salt marshes -- 2.1.5.2 Kelp forests and beds -- 2.1.5.3 Salt lakes and salt steppes of the Pannonian Region (Hungarian: Puszta (Pannonian Steppe), Alföld (Great Hungarian Plain)) -- 2.1.5.4 Wash fringes (wash fringe or wash margin -- German: Spülsaum, Strandline -- Polish: kidzina) -- 2.1.5.5 Isolated inland saline grasslands outside the Pannon and Pontic regions -- 2.1.6 Anthropogenic Salinization -- 2.1.6.1 Ruderal communities of salt-tolerant species in industrial regions -- 2.2 Halophyte-based Agriculture, Silviculture and Mariculture -- 2.3 Habitats of Halophytes as Natural Laboratories for Ecologists and Physiologists -- Acknowledgements -- References -- 3 Intra-habitat Variability of Halophytic Flora of North-west India -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 Floristic surveys -- 3.2.2 Digestion -- 3.2.3 Sodium (Na +) and potassium (K +) estimation -- 3.2.4 Calcium (Ca 2+) and magnesium (Mg 2+) -- 3.2.4.1 Reagents -- 3.2.4.2 Procedure -- 3.2.4.3 Determination of calcium -- 3.2.4.4 Calculation for calcium -- 3.2.4.5 Calculation for magnesium -- 3.2.5 Sulfate -- 3.2.5.1 Digestion for sulfate -- 3.2.5.2 Reagent. 3.2.5.3 Procedure -- 3.2.5.4 Calculation -- 3.2.6 Chloride (Cl −) -- 3.2.6.1 Digestion -- 3.2.7 TDS -- 3.2.8 Ash content -- 3.2.9 SAR -- 3.2.9.1 Calculation -- 3.2.10 pH -- 3.2.11 ECe -- 3.3 Results -- 3.3.1 Magnitude of plant growth -- 3.3.2 Composition of the rhizospheric soil -- 3.3.3 Ionic accumulation in plants -- 3.3.4 Species selection for control condition studies -- 3.4 Concluding Remarks -- Acknowledgements -- References -- 4 Halophytic Vegetation in South-east Europe: Classification, Conservation and Ecogeographical Patterns -- 4.1 Introduction -- 4.2 Review of Existing Databases of Halophytic Vegetation -- 4.3 Main Saline Habitats in Europe -- 4.4 Basic Characteristics and Classification of European Halophytic Vegetation -- 4.4.1 Inland halophytic vegetation: examples of central and south-east European saline habitats -- 4.4.1.1 Annual succulent vegetation of extreme salt-rich soils (Thero-Salicornietea) -- 4.4.1.2 Saline steppe grasslands (Festuco-Puccinellietea) -- 4.4.1.3 Vegetation of slightly salt-affected soils (Molinio-Arrhenatheretea and Phragmito-Magnocaricetea) -- 4.4.2 Coastal halophytic vegetation: examples of south-east European and Adriatic maritime habitats -- 4.5 Main Threats and Conservation of Saline Habitats -- References -- 5 South African Salt Marshes: Ecophysiology and Ecology in the Context of Climate Change -- 5.1 Introduction -- 5.2 Distribution of Salt Marsh in South Africa -- 5.3 Salt Marsh Zonation in South Africa -- 5.4 Climate Change and Predicted Variability in Abiotic Stress -- 5.5 Drought Tolerance -- 5.6 Submergence Tolerance in Salt Marsh Plants -- 5.7 Salinity Tolerance in Salt Marsh Plants -- 5.8 Episodic Events as a Window into the Future -- 5.9 A Closer Look at South African Salt Marshes -- 5.10 Conclusion, Knowledge Gaps and Research Needed -- References. 6 Seagrasses, the Unique Adaptation of Angiosperms to the Marine Environment: Effect of High Carbon and Ocean Acidification on Energetics and Ion Homeostasis -- 6.1 Introduction: True Marine Higher Plants -- 6.2 Plasma Membrane Energization and Na+ Permeability in Seagrasses -- 6.3 Nutrient Uptake in Seagrasses: Energization and Kinetics -- 6.4 Ocean Acidification: Nutrient Speciation and Energetic Consequences for Seagrasses -- 6.5 Effects of Inorganic Carbon Increase on Seagrass Ion Homeostasis -- 6.6 Conclusions and Perspectives -- References -- 7 Ecophysiology of Seed Heteromorphism in Halophytes: an Overview -- 7.1 Introduction -- 7.2 Seed Heteromorphism: Definition and Occurrence -- 7.3 Seed Heteromorphism: Basis and Nature -- 7.4 Seed Heteromorphism in Dicotyledonous Halophytes -- 7.5 Seed Heteromorphism in Monocotyledonous Halophytes -- 7.6 Seed Heteromorphism in Different Habitats -- 7.7 Seed Heteromorphism: Germination and Dormancy -- 7.8 Responses of Heteromorphic Seeds to Salinity -- 7.9 Responses of Heteromorphic Seeds to Temperature -- 7.10 Responses of Heteromorphic Seeds to Light/Photoperiod -- 7.11 Carryover Effects of Heteromorphic Seeds to Progeny -- 7.12 Conclusions -- References -- 8 Salt Marsh Plants: Biological Overview and Vulnerability to Climate Change -- 8.1 Introduction -- 8.2 Plant Zonations Within Salt Marshes -- 8.3 Growth and Survival of Salt Marsh Halophytes -- 8.4 Physiological Adaptations to Saline Environments -- 8.5 Sea-level Rise and Salt Marshes -- 8.6 Macroclimatic Influences on Coastal Salt Marshes -- 8.7 Conclusions -- References -- Section II Mechanisms of Adaptation -- 9 Ion Accumulation Pattern of Halophytes -- 9.1 Introduction -- 9.2 Ion Absorption and Accumulation -- 9.2.1 Sodium absorption and accumulation -- 9.2.2 Potassium absorption and accumulation -- 9.2.3 Calcium absorption and accumulation. 9.2.4 Magnesium absorption and accumulation -- 9.2.5 Chloride absorption and accumulation -- 9.2.6 Sulfate absorption and accumulation -- 9.3 Ionic Ratios in Halophytes -- 9.4 Soil-Halophyte Relationship -- 9.5 Conclusions -- References -- 10 Morpho-anatomical Traits of Halophytic Species -- 10.1 Introduction -- 10.2 General Morphological and Anatomical Adaptation of Plants to Saline Environments -- 10.2.1 Adaptation of upper vegetative plant parts (leaves and stem) -- 10.2.2 Ion excretion: salt bladders and salt glands -- 10.2.2.1 Salt bladders -- 10.2.2.2 Salt glands -- 10.2.3 Adaptation of root -- 10.2.4 Leaf and stem succulence -- 10.3 Review of Literature on Typical and Special Morphological and Anatomical Characteristics of Halophytes -- 10.4 Examples of Different Types of Halophytes Related to Morphological and Anatomical Characteristics -- 10.4.1 Mesohalophytes -- 10.4.1.1 Atriplex littoralis -- 10.4.1.2 Puccinellia distans -- 10.4.2 Euhalophytes -- 10.4.2.1 Xeromorphic -- 10.4.2.2 Succulent -- 10.4.3 Salt-excreting plants -- 10.4.3.1 Salt bladders: Halimione portulacoides -- 10.4.3.2 Salt glands: Limonium gmelinii -- 10.5 Conclusions: Relations of Plant Structure and Soil Salinity -- References -- 11 ROS Signalling, and Antioxidant Defence Network in Halophytes -- 11.1 Introduction: the Role of ROS in Adaptation to Salinity -- 11.2 Antioxidant Defence in Halophytes and Avoidance Mechanisms Enabling Adaptation to Salinity Stress at the Cellular Level -- 11.3 ROS Signalling Network -- 11.4 Response to Salinity at the Subcellular Level -- 11.4.1 Chloroplasts -- 11.4.1.1 Strategies for avoiding ROS generation -- 11.4.1.2 The antioxidant system in chloroplasts -- 11.4.1.3 Lipids as antioxidants in the defence against oxidative stress -- 11.4.2 Mitochondrial ROS defence and salinity tolerance. 11.4.3 Peroxisomes and glyoxysomes in salinity tolerance -- 11.5 Subcellular Integration in Antioxidant Defence in Halophytes -- References -- 12 Antioxidant Defence in Halophytes under High Salinity -- 12.1 Introduction -- 12.2 Halophytes -- 12.2.1 Classification of halophytes -- 12.3 Antioxidant Defence System -- 12.3.1 ROS generation in plants -- 12.3.2 Sites of ROS production in different cell organelles -- 12.3.3 Role of ROS production and detoxification -- 12.4 Enzymatic Component -- 12.4.1 SOD -- 12.4.2 Catalase (CAT) -- 12.4.3 Ascorbate peroxidase (APX) -- 12.4.4 Peroxidase (POX) -- 12.5 Non-enzymatic Component -- 12.5.1 Ascorbic acid (AA) -- 12.5.2 Glutathione -- 12.5.3 Tocopherols -- 12.5.4 Carotenoids -- 12.5.5 Polyphenols -- 12.6 Conclusion -- References -- 13 Soil Chemical Composition Modifies the Morpho-physiological Responses of Prosopis strombulifera, a Halophyte Native to South America -- 13.1 Introduction -- 13.2 Growth Responses and Anatomical Modifications Under Na 2 SO 4 Treatment -- 13.3 Effects of Na 2 SO 4 on Ion Compartmentation -- 13.4 Effects of Na 2 SO 4 on Hydric Relations -- 13.5 Effects of Na 2 SO 4 in Compatible Solutes Production -- 13.6 Effects of Na 2 SO 4 on the Metabolomic Profile -- 13.7 Effects of Na 2 SO 4 on Endogenous Phytohormones -- 13.8 Oxidative Damage and Antioxidant System Response under Na 2 SO 4 -- 13.9 Conclusion -- References -- 14 Elimination of Salt by Recretion: Salt Glands and Gland-supported Bladders in Recretohalophytes -- 14.1 Introduction -- 14.2 Polyphyletic Evolution of Salt Glands -- 14.3 Structural Aspects -- 14.3.1 Increased anatomical complexity -- 14.3.1.1 From hydathodes to salt glands -- 14.3.1.2 Epidermal bladders versus salt hairs -- 14.3.2 Transport pathways -- 14.3.3 Gland cytology -- 14.4 Materials Recreted -- 14.5 Transport Mechanisms. 14.5.1 Electrochemical gradients, active transport and supply of energy.
This book contains current knowledge and up-to-date developments in the field of halophyte biology, ecology and potential uses. It explores the adaptive mechanisms of halophytes that allow them to grow in environments unsuitable for conventional crops and considers their role as a source of food, fuel, fodder, fibre, essential oils and medicines.
9781786394354
Halophytes.
Salt-tolerant crops.
Plants--Adaptation.
Crops and climate.
Electronic books.
QK922.H35 2018
581.4/2