Model Theory and Linear Extreme Points in the Numerical Radius Unit Ball.
Dritschel, Michael A.
Model Theory and Linear Extreme Points in the Numerical Radius Unit Ball. - 1st ed. - 1 online resource (77 pages) - Memoirs of the American Mathematical Society ; v.129 . - Memoirs of the American Mathematical Society .
Intro -- Contents -- Abstract -- Introduction -- 1. The Canonical Decomposition -- 2. The Extremals ∂[sup(e)] -- The Pull Basis and Strong Pull Basis Properties -- Characterizations of Extremals -- 3. Extensions to the Extremals -- 4. Linear Extreme points in C -- 5. Numerical Ranges -- 6. Unitary 2-Dilations -- 7. Application to the inequality A Re (e[sup(iθ)]A) ≥ 0 -- Appendix -- References -- Index.
9781470402006
Operator theory.
Decomposition method.
Model theory.
Electronic books.
QA329.2 -- .D75 1997eb
510 s;515/.7246
Model Theory and Linear Extreme Points in the Numerical Radius Unit Ball. - 1st ed. - 1 online resource (77 pages) - Memoirs of the American Mathematical Society ; v.129 . - Memoirs of the American Mathematical Society .
Intro -- Contents -- Abstract -- Introduction -- 1. The Canonical Decomposition -- 2. The Extremals ∂[sup(e)] -- The Pull Basis and Strong Pull Basis Properties -- Characterizations of Extremals -- 3. Extensions to the Extremals -- 4. Linear Extreme points in C -- 5. Numerical Ranges -- 6. Unitary 2-Dilations -- 7. Application to the inequality A Re (e[sup(iθ)]A) ≥ 0 -- Appendix -- References -- Index.
9781470402006
Operator theory.
Decomposition method.
Model theory.
Electronic books.
QA329.2 -- .D75 1997eb
510 s;515/.7246