ORPP logo

Inverse Invariant Theory and Steenrod Operations.

Neusel, Mara D.

Inverse Invariant Theory and Steenrod Operations. - 1st ed. - 1 online resource (175 pages) - Memoirs of the American Mathematical Society ; v.146 . - Memoirs of the American Mathematical Society .

Intro -- Contents -- Introduction -- 1. The Δ…Theorem -- 1.1 Steenrod Operations -- 1.2 The Δ…theorem, Corollaries and Examples -- 2. Some Field Theory over the Steenrod Algebra -- 2.1 Graded Fields over the Steenrod Algebra -- 2.2 Separable Extensions -- 2.3 Inseparable Extensions -- 2.4 The Vector Space of Derivations -- 3. The Integral Closure Theorem and the Unstable Part -- 3.1 Rings of Fractions and Their Unstable Part -- 3.2 The Integral Closure Theorem -- 4. The Inseparable Closure -- 4.1 The Introduction of our Exotic Animal -- 4.2 The Animal and its Properties -- 4.3 Further Properties -- 5. The Embedding Theorem I -- 5.1 A Dickson Algebra in FF(H*) -- 5.2 Preparing the Embedding Theorem apres Smith-Switzer -- 5.3 The Embedding Theorem -- 6. Noetherianess, the Embedding Theorem II and Turkish Delights -- 6.1 Noetherianess -- 6.2 Turkish Delights -- 6.3 Noetherianess II -- 7. The Galois Embedding Theorem, the Little Imbedding Theorem and A Bit More -- 7.1 The Galois Embedding Theorem -- 7.2 A Bit More -- 7.3 Uniqueness Theorems -- 7.4 The Little Imbedding Theorem -- 8. The Big Imbedding Theorem, Thom Classes, Turkish Delights II and the Reverse Landweber-Stong Conjecture -- 8.1 The Big Imbedding Theorem -- 8.2 Consequences for the Module of Derivations -- 8.3 Turkish Delights II -- 8.4 The Reverse Landweber-Stong Conjecture -- A. Technical Stuff -- A.1 Old and New Relations in the Steenrod Algebra -- A.2 The Action of the Steenrod Algebra on the Dickson Algebra -- A.3 The Fractal Property of the Dickson Algebra -- A.4 The Generalized Jacobian -- References -- Font and Typesetting Information.

9781470402839


Steenrod algebra.
Invariants.


Electronic books.

QA612.782 -- .N48 2000eb

510 s;512.55

© 2024 Resource Centre. All rights reserved.