Renormalized Self-Intersection Local Times and Wick Power Chaos Processes.
Marcus, Michael B.
Renormalized Self-Intersection Local Times and Wick Power Chaos Processes. - 1st ed. - 1 online resource (138 pages) - Memoirs of the American Mathematical Society ; v.142 . - Memoirs of the American Mathematical Society .
Intro -- Contents -- Chapter 1. Introduction -- 1. Statement of results -- 2. Processes in Class A and stable mixtures -- 3. Outline of remaining chapters -- Chapter 2. Wick products -- Chapter 3. Wick power chaos processes -- 1. Definition -- 2. Perturbations of Wick power chaoses -- Chapter 4. Isomorphism theorems -- 1. Dynkin isomorphism theorem -- 2. Isomorphisms for renormalized self-intersection local times -- Chapter 5. Equivalence of two versions of renormalized self-intersection local times -- 1. The case n = 2 -- 2. The general case -- Chapter 6. Continuity -- Chapter 7. Stable mixtures -- Chapter 8. Examples -- Chapter 9. A large deviation result -- Appendix A. Necessary conditions -- Appendix B. The case n = 3 -- 1. The isomorphism theorem for n = 3 -- 2. L[sub(3)](μ) = 6[sub(γ3)](μ) -- Bibliography.
9781470402662
Gaussian processes.
Local times (Stochastic processes).
Electronic books.
QA274.47 -- .M37 1999eb
510 s;519.2/3
Renormalized Self-Intersection Local Times and Wick Power Chaos Processes. - 1st ed. - 1 online resource (138 pages) - Memoirs of the American Mathematical Society ; v.142 . - Memoirs of the American Mathematical Society .
Intro -- Contents -- Chapter 1. Introduction -- 1. Statement of results -- 2. Processes in Class A and stable mixtures -- 3. Outline of remaining chapters -- Chapter 2. Wick products -- Chapter 3. Wick power chaos processes -- 1. Definition -- 2. Perturbations of Wick power chaoses -- Chapter 4. Isomorphism theorems -- 1. Dynkin isomorphism theorem -- 2. Isomorphisms for renormalized self-intersection local times -- Chapter 5. Equivalence of two versions of renormalized self-intersection local times -- 1. The case n = 2 -- 2. The general case -- Chapter 6. Continuity -- Chapter 7. Stable mixtures -- Chapter 8. Examples -- Chapter 9. A large deviation result -- Appendix A. Necessary conditions -- Appendix B. The case n = 3 -- 1. The isomorphism theorem for n = 3 -- 2. L[sub(3)](μ) = 6[sub(γ3)](μ) -- Bibliography.
9781470402662
Gaussian processes.
Local times (Stochastic processes).
Electronic books.
QA274.47 -- .M37 1999eb
510 s;519.2/3