Isolated Involutions in Finite Groups.
Waldecker, Rebecca.
Isolated Involutions in Finite Groups. - 1st ed. - 1 online resource (164 pages) - Memoirs of the American Mathematical Society ; v.226 . - Memoirs of the American Mathematical Society .
Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- 2.1. Definitions and Notation -- 2.2. General Results -- 2.3. A Nilpotent Action Result -- Chapter 3. Isolated Involutions -- Chapter 4. A Minimal Counter-Example to Glauberman's Z*-Theorem -- Chapter 5. Balance and Signalizer Functors -- Chapter 6. Preparatory Results for the Local Analysis -- 6.1. The Bender Method -- 6.2. -Minimal Subgroups, Pushing Down and Uniqueness Results -- Chapter 7. Maximal Subgroups Containing -- Chapter 8. The 2-rank of _( ) -- 8.1. Involutions in _( )\ -- 8.2. The Proof of Theorem B -- Chapter 9. Components of \overline and the Soluble Z*-Theorem -- Chapter 10. Unbalanced Components -- Chapter 11. The 2-Rank of -- Chapter 12. The F*-Structure Theorem -- Chapter 13. More Involutions -- 13.1. Preliminary Results -- 13.2. The Symmetric Case -- 13.3. The General Case -- Chapter 14. The Endgame -- Chapter 15. The Final Contradiction and the Z*-Theorem for ₂-Groups -- Bibliography -- Index.
9781470410612
Glauberman, G., -- 1941-.
Involutes (Mathematics).
Finite groups.
Solvable groups.
Feit-Thompson theorem.
Electronic books.
QA557 -- .W353 2013eb
512/.23
Isolated Involutions in Finite Groups. - 1st ed. - 1 online resource (164 pages) - Memoirs of the American Mathematical Society ; v.226 . - Memoirs of the American Mathematical Society .
Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- 2.1. Definitions and Notation -- 2.2. General Results -- 2.3. A Nilpotent Action Result -- Chapter 3. Isolated Involutions -- Chapter 4. A Minimal Counter-Example to Glauberman's Z*-Theorem -- Chapter 5. Balance and Signalizer Functors -- Chapter 6. Preparatory Results for the Local Analysis -- 6.1. The Bender Method -- 6.2. -Minimal Subgroups, Pushing Down and Uniqueness Results -- Chapter 7. Maximal Subgroups Containing -- Chapter 8. The 2-rank of _( ) -- 8.1. Involutions in _( )\ -- 8.2. The Proof of Theorem B -- Chapter 9. Components of \overline and the Soluble Z*-Theorem -- Chapter 10. Unbalanced Components -- Chapter 11. The 2-Rank of -- Chapter 12. The F*-Structure Theorem -- Chapter 13. More Involutions -- 13.1. Preliminary Results -- 13.2. The Symmetric Case -- 13.3. The General Case -- Chapter 14. The Endgame -- Chapter 15. The Final Contradiction and the Z*-Theorem for ₂-Groups -- Bibliography -- Index.
9781470410612
Glauberman, G., -- 1941-.
Involutes (Mathematics).
Finite groups.
Solvable groups.
Feit-Thompson theorem.
Electronic books.
QA557 -- .W353 2013eb
512/.23