Transplantation Theorems and Multiplier Theorems for Jacobi Series.
Muckenhoupt, Benjamin.
Transplantation Theorems and Multiplier Theorems for Jacobi Series. - 1st ed. - 1 online resource (94 pages) - Memoirs of the American Mathematical Society ; v.64 . - Memoirs of the American Mathematical Society .
Intro -- Table of Contents -- 1. Introduction -- 2. Jacobi polynomials -- 3. A reduction lemma -- 4. An estimate for separated arguments -- 5. Kernel estimates for separated arguments -- 6. An estimate for noncomparable values near 0 -- 7. Kernel estimates for noncomparable values near 0 -- 8. Kernel estimates for comparable values -- 9. Facts concerning weighted norm inequalities -- 10. A transplantation lemma without moment conditions -- 11. A transplantation lemma with moment conditions -- 12. Proof of the power weight transplantation theorem -- 13. Multipliers for power weights: a special case -- 14. Multipliers for power weights -- 15. Transplantation lemmas with general weights -- 16. General weight transplantation for s < -- min(α+γ+2, β+δ+2) -- 17. General weight transplantation for s ≥ min(α+γ+2, β+δ+2) -- 18. Moment conditions are essential if s ≥ min(α+γ+2, β+δ+2) -- References.
9781470407728
Jacobi series.
Jacobi polynomials.
Multipliers (Mathematical analysis).
Electronic books.
QA404.5 -- .M835 1986eb
515/.2433
Transplantation Theorems and Multiplier Theorems for Jacobi Series. - 1st ed. - 1 online resource (94 pages) - Memoirs of the American Mathematical Society ; v.64 . - Memoirs of the American Mathematical Society .
Intro -- Table of Contents -- 1. Introduction -- 2. Jacobi polynomials -- 3. A reduction lemma -- 4. An estimate for separated arguments -- 5. Kernel estimates for separated arguments -- 6. An estimate for noncomparable values near 0 -- 7. Kernel estimates for noncomparable values near 0 -- 8. Kernel estimates for comparable values -- 9. Facts concerning weighted norm inequalities -- 10. A transplantation lemma without moment conditions -- 11. A transplantation lemma with moment conditions -- 12. Proof of the power weight transplantation theorem -- 13. Multipliers for power weights: a special case -- 14. Multipliers for power weights -- 15. Transplantation lemmas with general weights -- 16. General weight transplantation for s < -- min(α+γ+2, β+δ+2) -- 17. General weight transplantation for s ≥ min(α+γ+2, β+δ+2) -- 18. Moment conditions are essential if s ≥ min(α+γ+2, β+δ+2) -- References.
9781470407728
Jacobi series.
Jacobi polynomials.
Multipliers (Mathematical analysis).
Electronic books.
QA404.5 -- .M835 1986eb
515/.2433