ORPP logo

Lebesgue Theory in the Bidual of C(X).

Kaplan, Samuel.

Lebesgue Theory in the Bidual of C(X). - 1st ed. - 1 online resource (143 pages) - Memoirs of the American Mathematical Society ; v.121 . - Memoirs of the American Mathematical Society .

Intro -- Contents -- Introduction -- 1 Preliminaries -- Chapter 1 [omitted][sup(∞)] -- 2 The upper and lower "envelopes" of an element -- 3 The "boundary" of an element -- 4 The "integrable elements -- 5 The negligible elements -- 6 The "μ-integrable elements -- Chapter 2 Convergence -- 7 Almost everywhere order convergence -- 8 Unbounded order convergence -- 9 Almost everywhere unbounded order convergence -- 10 The Dieudonné topology -- 11 Convergence in Measure -- 12 Sequences in [omitted][sup(∞)] -- Chapter 3 Some classical theorems -- 13 Elementary theorems -- 14 The Egorov Theorem -- 15 The Lusin Theorem -- Chapter 4 The Projection of C" onto C"[sub(α)] -- 16 The star elements -- 17 [omitted][sup(∞)] and the star elements -- 18 [omitted][sup(∞)][sub(α)] -- 19 Convergence in C"[sub(α)] -- 20 Back to [omitted][sup(∞)][sub(α)] -- Chapter 5 Lebesgue Theory in C"[sub(α)] -- 21 ∫[sup(*)]fdμ, ∫[sub(*)]fdμ -- 22 ∫fdμ -- 23 The classical theorems -- References -- Index of Terminology -- Index of Symbols.

9781470401641


Lebesgue integral.
Radon measures.
Banach lattices.


Electronic books.

QA3 -- .K375 1996eb

515/.43

© 2024 Resource Centre. All rights reserved.