Recent Trends In Surface And Colloid Science.
Paul, Bidyut K.
Recent Trends In Surface And Colloid Science. - 1st ed. - 1 online resource (367 pages) - Statistical Science And Interdisciplinary Research ; v.12 . - Statistical Science And Interdisciplinary Research .
Intro -- Contents -- Foreword -- Preface -- 1. Specific Ion Effects in Colloid and Surface Science: A Modified DLVO Approach Werner Kunz and Mathias Bostrom -- 1.1. Introduction -- 1.2. Modified DLVO Theory -- 1.3. Conclusions -- Acknowledgments -- References -- 2. Electrokinetics in a Suspension of Soft Particles Hiroyuki Ohshima -- 2.1. Introduction -- 2.2. Electrophoresis of Soft Particles -- 2.3. Sedimentation Potential -- 2.4. Electrokinetic Flow between Two Parallel Soft Plates -- 2.5. The Physical Meaning of the Softness Parameter -- 2.6. Conclusions and Outlook -- References -- 3. Relative Humidity and Evaporation of a Simple Fragrance Emulsion Stig E. Friberg and Patricia A. Aikens -- 3.1. Introduction -- 3.2. The Concept -- 3.3. The Pertinent Part of the Phase Diagram -- 3.4. Vapor Pressure and Composition -- 3.5. Calculation of the Evaporation Path -- 3.6. Results -- 3.7. Discussion -- 3.8. Conclusion -- References -- 4. Aging and Stability of W/O Emulsions with NaOH in Aqueous Phase Rujuta Thaker, Bina Sengupta and Ranjan Sengupta -- 4.1. Introduction -- 4.2. Materials and Reagents -- 4.3. Experimental -- 4.4. Results and Discussion -- 4.5. Effect of and Cio on emulsion viscosity -- 4.6. Effect of surfactant concentration -- 4.7. Effect of aging -- 4.8. Conclusions -- References -- 5. Energetics of Micelle Formation: Non Agreement between the Enthalpy Change Measured by the Direct Method of Calorimetry and the Indirect Method of van't Hoff Satya P. Moulik and Debolina Mitra -- 5.1. Introduction -- 5.2. Fundamental Considerations -- 5.3. Calorimetry -- 5.4. Results -- 5.5. Discussion -- 5.6. Conclusion -- Acknowledgments -- References -- 6. Unusual Phase Behavior in a Two-Component System Bruno F.B. Silva, Eduardo F. Marques and Ulf Olsson -- 6.1. Introduction -- 6.2. Experimental and modeling details -- 6.3. Results and discussion. 6.3.1. Concentrated side: lamellar-lamellar coexistence and modeling -- 6.3.2. Dilute side -- 6.4. Conclusions -- References -- 7. Mixed Proteins/Surfactants Interfacial Layers as Studied by Drop Shape Analysis and Capillary Pressure Tensiometry V.S. Alahverdjieva, D.O. Grigoriev, A. Javadi, Cs. Kotsmar, J. Kr¨agel, R. Miller, V. Pradines and A.V. Makievski -- 7.1. Introduction -- 7.2. Theoretical Models -- 7.2.1. Thermodynamic Model -- 7.2.2. Adsorption Dynamics Modelling -- 7.2.3. Dilational Rheological Model -- 7.3. Experimental Technique -- 7.3.1. Drop Profile Analysis Tensiometry -- 7.3.2. Bulk Exchange in Single Drops -- 7.3.3. Capillary Pressure Tensiometry -- 7.4. Adsorption Kinetics and Equilibrium Isotherms -- 7.4.1. Dynamic Surface Tension -- 7.4.2. Equilibrium Surface Tension Isotherms -- 7.4.3. Reversibility of Adsorption -- 7.5. Dilational Elasticity and Viscosity -- 7.6. Conclusions -- References -- 8. Factors Affecting Mixed Aggregation Pablo C. Schulz -- 8.1. The Regular Solution Theory of Mixed Micelles -- 8.2. Discussion -- 8.2.1. Factors Affecting ßcore -- 8.2.2. The interaction between π-electrons and water -- 8.3. Factors affecting ßph -- 8.3.1. The Size of Polar Head Groups -- 8.3.2. The Change in the Structure of the Polar Layer -- 8.4. Conclusions and Outlook -- References -- 9. Micellization Characteristics of Sodium Dioctylsulfosuccinate: An Overview S. Chanda, O.G. Singh and K. Ismail -- 9.1. Introduction -- 9.2. Experimental -- 9.3. Results and Discussion -- 9.3.1. Counter ion binding constant -- 9.3.2. Polarity of the micellar interface using pyrene probe -- 9.3.3. Aggregation Number -- 9.3.4. Polarity of the micellar interface using pyrenecarboxaldehyde probe -- 9.3.5. Polarity of the micellar interface using Reichardt's dye probe -- 9.3.6. Phase behaviour of AOT - water system and shape of AOT micelle. 9.3.7. Change of cmc of AOT in the presence of sodium salicylate -- 9.4. Conclusions -- Acknowledgments -- References -- 10. Phase Separation Study of Surface-Active Drug Promazine Hydrochloride in Absence and Presence of Organic Additives Kabir-ud-Din, Mohammed D.A. Al Ahmadi, Andleeb Z. Naqvi and Mohd. Akram -- 10.1. Introduction -- 10.2. Materials -- 10.3. Methods -- 10.3.1. Cloud Point (CP) Measurements -- 10.3.2. Dye Solubilization Measurements -- 10.4. Results and Discussion -- 10.5. Conclusions -- References -- 11. Effect of Urea on Surfactant Aggregates: A Comprehensive Review Silvia M.B. Souza, E.B. Alvarez and Mario J. Politi -- 11.1. Introduction -- 11.2. Liquid Water -- 11.3. Aqueous Solutions -- 11.4. Monolayers -- 11.5. Micelles -- 11.6. Reversed Micelles and Microemulsions -- 11.7. Vesicles -- 11.8. Conclusions -- References -- 12. Specific Ion-Pair/Hydration Model for the Sphere-To-Rod Transitions of Aqueous Cationic Micelles. The Evidence from Chemical Trapping Laurence S. Romsted -- 12.1. Introduction -- 12.2. Balance-of-forces Controlling Micelle Size and Shape -- 12.2.1. Balance-of-forces/Free Energy of Micelle Formation -- 12.2.2. The Driving Force, The Hydrophobic Effect -- 12.2.3. The Hydrophobic Effect Drives Micellar Aggregation -- 12.2.4. The Balancing Force: the Traditional View -- 12.2.5. The Relationship of Surfactant and Aggregate Structure: The Packing Parameter -- 12.2.6. The Balancing Effect: The Specific Ion-Pair / Hydration Model -- 12.3. The Chemical Trapping Method and Experimental Protocols-In Brief -- 12.3.1. Method -- 12.3.2. Experimental Protocols -- 12.4. Ion Specific Effects on cmcs and Sphere-to-Rod Transition Concentrations -- 12.5. Sphere-to-Rod Transitions: Chemical Trapping Results -- 12.5.1. Gemini Micelles -- 12.5.2. Substituent Effects with Aromatic Counterions. 12.5.3. Single Chain Surfactants: Cetyltrimethylammonium Chloride, CTACl -- 12.5.4. Single Chain Surfactants: Cetyltrimethylammonium Bromide (CTABr) and Cetyltri-n-propylammonium Bromide (CTPABr) -- 12.6. Discussion -- 12.7. Conclusions -- Acknowledgments -- References -- 13. Biocatalytic Studies in Microemulsions and Related Systems Aristotelis Xenakis -- 13.1. Introduction -- 13.2. Enzymes in Microemulsions -- 13.3. Catalytic Studies in Microemulsion-based Organogels (MBGs) -- 13.4. Catalytic Studies in Microemulsion-like Surfactant-free Systems -- 13.5. Catalytic Studies in MBGs in scCO2 -- 13.6. Conclusions and Outlook -- References -- 14. Colloidal Dispersions for Drug Delivery Syamasri Gupta -- 14.1. Introduction -- 14.1.1. Liposomes -- 14.1.2. Niosome -- 14.1.3. Microspheres and Nanoparticles -- 14.1.4. Microemulsion -- 14.1.5. Organogel, Hydrogel and other Colloidal Dispersions -- 14.2. Future Perspective -- Acknowledgment -- References -- 15. Nanoscale Self-Organization of Polyampholytes H.B. Bohidar and Amarnath Gupta -- 15.1. Introduction -- 15.2. Experimental Observations -- 15.3. Simulation Studies -- 15.4. Results and Discussions -- 15.5. Conclusions -- Acknowledgments: -- References -- 16. Polymer-Modified Microemulsions as a New Type of Template for the Nanoparticle Formation Joachim Koetz, Carine Note, Jennifa Baier and Stefanie Lutter -- 16.1. Introduction -- 16.2. Experimental -- 16.2.1. Materials -- 16.2.2. Methods -- 16.2.3. Synthesis of the Nanoparticles -- 16.2.4. Characterisation of the Nanoparticles -- 16.3. Results -- 16.3.1. Characterisation of the Polymer-modified Microemulsion Template Phases -- 16.3.1.1. SB/water/heptanol system -- 16.3.1.2. SDS/water/xylene-pentanol system -- 16.3.2. BaSO4 Nanoparticle Formation in the Microemulsion Template Phase -- 16.3.2.1. Nanoparticle Formation in the L2 Phase. 16.3.2.2. Nanoparticle Formation in the Bicontinuous Phase -- 16.3.3. Redispersed BaSO4 Nanoparticles -- 16.3.3.1. Nanoparticles Redispersed from the L2 Phase -- 16.3.3.2. Nanoparticles Redispersed from the Bicontinuous Phase -- 16.4. Conclusions -- References -- 17. Maximizing the Uptake of Nickel Oxide Nanoparticles by AOT (W/O) Microemulsions Nashaat N. Nassar and Maen M. Husein -- 17.1. Introduction -- 17.2. Experimental Section -- 17.2.1. Chemicals -- 17.2.2. Nanoparticle Synthesis -- 17.3. Results and Discussion -- 17.3.1. Stability of the Colloidal Nanoparticles -- 17.3.2. Effect of AOT Concentration -- 17.3.3. Effect of Water to AOT Mole Ratio, R -- 17.3.4. Effect of Concentration of Ni(NO3)2 Precursor -- 17.4. Conclusions -- Acknowledgments -- References -- 18. A Brief Overview on Synthesis and Size Dependent Photocatalytic Behaviour of Luminescent Semiconductor Quantum Dots A. Priyam, S. Ghosh, A. Datta, A. Chatterjee and A. Saha -- 18.1. Introduction -- 18.2. Experimental -- 18.2.1. Synthesis of Thiol-capped CdS and CdTe Quantum Dots -- 18.2.2. Dendrimer-mediated Synthesis of CdTe Quantum Dots -- 18.2.3. Determination of the Average Particle Size and Size Distribution -- 18.3. Determination of PLQE -- 18.4. Results and Discussions -- 18.4.1. Supersaturation Driven Tailoring of Size Distribution and PLQE -- 18.4.2. Size Distribution -- 18.4.3. Photoluminescence Quantum Efficiency -- 18.5. Synthesis of CdTe QDs in Dendrimer Matrix -- 18.5.1. Effect of variation in Cd2+: Te2- Molar Ratio -- 18.5.2. pH Effect -- 18.5.3. Temperature Effect -- 18.6. Size Dependent Luminescence Quenching of CdS QDs and Photocatalytic Degradation of Nitroaromatics -- 18.7. Concluding Remarks -- Acknowledgements -- References. 19. Dramatic Enhancement in the Cation Sensing Efficiency in Anionic Micelles: A Simple and Efficient Approach Towards Improving the Sensor Efficiency Paramita Das, Deboleena Sarkar and Nitin Chattopadhyay.
9789814299428
Surface chemistry.
Electronic books.
QD506.R43 2012
541.3
Recent Trends In Surface And Colloid Science. - 1st ed. - 1 online resource (367 pages) - Statistical Science And Interdisciplinary Research ; v.12 . - Statistical Science And Interdisciplinary Research .
Intro -- Contents -- Foreword -- Preface -- 1. Specific Ion Effects in Colloid and Surface Science: A Modified DLVO Approach Werner Kunz and Mathias Bostrom -- 1.1. Introduction -- 1.2. Modified DLVO Theory -- 1.3. Conclusions -- Acknowledgments -- References -- 2. Electrokinetics in a Suspension of Soft Particles Hiroyuki Ohshima -- 2.1. Introduction -- 2.2. Electrophoresis of Soft Particles -- 2.3. Sedimentation Potential -- 2.4. Electrokinetic Flow between Two Parallel Soft Plates -- 2.5. The Physical Meaning of the Softness Parameter -- 2.6. Conclusions and Outlook -- References -- 3. Relative Humidity and Evaporation of a Simple Fragrance Emulsion Stig E. Friberg and Patricia A. Aikens -- 3.1. Introduction -- 3.2. The Concept -- 3.3. The Pertinent Part of the Phase Diagram -- 3.4. Vapor Pressure and Composition -- 3.5. Calculation of the Evaporation Path -- 3.6. Results -- 3.7. Discussion -- 3.8. Conclusion -- References -- 4. Aging and Stability of W/O Emulsions with NaOH in Aqueous Phase Rujuta Thaker, Bina Sengupta and Ranjan Sengupta -- 4.1. Introduction -- 4.2. Materials and Reagents -- 4.3. Experimental -- 4.4. Results and Discussion -- 4.5. Effect of and Cio on emulsion viscosity -- 4.6. Effect of surfactant concentration -- 4.7. Effect of aging -- 4.8. Conclusions -- References -- 5. Energetics of Micelle Formation: Non Agreement between the Enthalpy Change Measured by the Direct Method of Calorimetry and the Indirect Method of van't Hoff Satya P. Moulik and Debolina Mitra -- 5.1. Introduction -- 5.2. Fundamental Considerations -- 5.3. Calorimetry -- 5.4. Results -- 5.5. Discussion -- 5.6. Conclusion -- Acknowledgments -- References -- 6. Unusual Phase Behavior in a Two-Component System Bruno F.B. Silva, Eduardo F. Marques and Ulf Olsson -- 6.1. Introduction -- 6.2. Experimental and modeling details -- 6.3. Results and discussion. 6.3.1. Concentrated side: lamellar-lamellar coexistence and modeling -- 6.3.2. Dilute side -- 6.4. Conclusions -- References -- 7. Mixed Proteins/Surfactants Interfacial Layers as Studied by Drop Shape Analysis and Capillary Pressure Tensiometry V.S. Alahverdjieva, D.O. Grigoriev, A. Javadi, Cs. Kotsmar, J. Kr¨agel, R. Miller, V. Pradines and A.V. Makievski -- 7.1. Introduction -- 7.2. Theoretical Models -- 7.2.1. Thermodynamic Model -- 7.2.2. Adsorption Dynamics Modelling -- 7.2.3. Dilational Rheological Model -- 7.3. Experimental Technique -- 7.3.1. Drop Profile Analysis Tensiometry -- 7.3.2. Bulk Exchange in Single Drops -- 7.3.3. Capillary Pressure Tensiometry -- 7.4. Adsorption Kinetics and Equilibrium Isotherms -- 7.4.1. Dynamic Surface Tension -- 7.4.2. Equilibrium Surface Tension Isotherms -- 7.4.3. Reversibility of Adsorption -- 7.5. Dilational Elasticity and Viscosity -- 7.6. Conclusions -- References -- 8. Factors Affecting Mixed Aggregation Pablo C. Schulz -- 8.1. The Regular Solution Theory of Mixed Micelles -- 8.2. Discussion -- 8.2.1. Factors Affecting ßcore -- 8.2.2. The interaction between π-electrons and water -- 8.3. Factors affecting ßph -- 8.3.1. The Size of Polar Head Groups -- 8.3.2. The Change in the Structure of the Polar Layer -- 8.4. Conclusions and Outlook -- References -- 9. Micellization Characteristics of Sodium Dioctylsulfosuccinate: An Overview S. Chanda, O.G. Singh and K. Ismail -- 9.1. Introduction -- 9.2. Experimental -- 9.3. Results and Discussion -- 9.3.1. Counter ion binding constant -- 9.3.2. Polarity of the micellar interface using pyrene probe -- 9.3.3. Aggregation Number -- 9.3.4. Polarity of the micellar interface using pyrenecarboxaldehyde probe -- 9.3.5. Polarity of the micellar interface using Reichardt's dye probe -- 9.3.6. Phase behaviour of AOT - water system and shape of AOT micelle. 9.3.7. Change of cmc of AOT in the presence of sodium salicylate -- 9.4. Conclusions -- Acknowledgments -- References -- 10. Phase Separation Study of Surface-Active Drug Promazine Hydrochloride in Absence and Presence of Organic Additives Kabir-ud-Din, Mohammed D.A. Al Ahmadi, Andleeb Z. Naqvi and Mohd. Akram -- 10.1. Introduction -- 10.2. Materials -- 10.3. Methods -- 10.3.1. Cloud Point (CP) Measurements -- 10.3.2. Dye Solubilization Measurements -- 10.4. Results and Discussion -- 10.5. Conclusions -- References -- 11. Effect of Urea on Surfactant Aggregates: A Comprehensive Review Silvia M.B. Souza, E.B. Alvarez and Mario J. Politi -- 11.1. Introduction -- 11.2. Liquid Water -- 11.3. Aqueous Solutions -- 11.4. Monolayers -- 11.5. Micelles -- 11.6. Reversed Micelles and Microemulsions -- 11.7. Vesicles -- 11.8. Conclusions -- References -- 12. Specific Ion-Pair/Hydration Model for the Sphere-To-Rod Transitions of Aqueous Cationic Micelles. The Evidence from Chemical Trapping Laurence S. Romsted -- 12.1. Introduction -- 12.2. Balance-of-forces Controlling Micelle Size and Shape -- 12.2.1. Balance-of-forces/Free Energy of Micelle Formation -- 12.2.2. The Driving Force, The Hydrophobic Effect -- 12.2.3. The Hydrophobic Effect Drives Micellar Aggregation -- 12.2.4. The Balancing Force: the Traditional View -- 12.2.5. The Relationship of Surfactant and Aggregate Structure: The Packing Parameter -- 12.2.6. The Balancing Effect: The Specific Ion-Pair / Hydration Model -- 12.3. The Chemical Trapping Method and Experimental Protocols-In Brief -- 12.3.1. Method -- 12.3.2. Experimental Protocols -- 12.4. Ion Specific Effects on cmcs and Sphere-to-Rod Transition Concentrations -- 12.5. Sphere-to-Rod Transitions: Chemical Trapping Results -- 12.5.1. Gemini Micelles -- 12.5.2. Substituent Effects with Aromatic Counterions. 12.5.3. Single Chain Surfactants: Cetyltrimethylammonium Chloride, CTACl -- 12.5.4. Single Chain Surfactants: Cetyltrimethylammonium Bromide (CTABr) and Cetyltri-n-propylammonium Bromide (CTPABr) -- 12.6. Discussion -- 12.7. Conclusions -- Acknowledgments -- References -- 13. Biocatalytic Studies in Microemulsions and Related Systems Aristotelis Xenakis -- 13.1. Introduction -- 13.2. Enzymes in Microemulsions -- 13.3. Catalytic Studies in Microemulsion-based Organogels (MBGs) -- 13.4. Catalytic Studies in Microemulsion-like Surfactant-free Systems -- 13.5. Catalytic Studies in MBGs in scCO2 -- 13.6. Conclusions and Outlook -- References -- 14. Colloidal Dispersions for Drug Delivery Syamasri Gupta -- 14.1. Introduction -- 14.1.1. Liposomes -- 14.1.2. Niosome -- 14.1.3. Microspheres and Nanoparticles -- 14.1.4. Microemulsion -- 14.1.5. Organogel, Hydrogel and other Colloidal Dispersions -- 14.2. Future Perspective -- Acknowledgment -- References -- 15. Nanoscale Self-Organization of Polyampholytes H.B. Bohidar and Amarnath Gupta -- 15.1. Introduction -- 15.2. Experimental Observations -- 15.3. Simulation Studies -- 15.4. Results and Discussions -- 15.5. Conclusions -- Acknowledgments: -- References -- 16. Polymer-Modified Microemulsions as a New Type of Template for the Nanoparticle Formation Joachim Koetz, Carine Note, Jennifa Baier and Stefanie Lutter -- 16.1. Introduction -- 16.2. Experimental -- 16.2.1. Materials -- 16.2.2. Methods -- 16.2.3. Synthesis of the Nanoparticles -- 16.2.4. Characterisation of the Nanoparticles -- 16.3. Results -- 16.3.1. Characterisation of the Polymer-modified Microemulsion Template Phases -- 16.3.1.1. SB/water/heptanol system -- 16.3.1.2. SDS/water/xylene-pentanol system -- 16.3.2. BaSO4 Nanoparticle Formation in the Microemulsion Template Phase -- 16.3.2.1. Nanoparticle Formation in the L2 Phase. 16.3.2.2. Nanoparticle Formation in the Bicontinuous Phase -- 16.3.3. Redispersed BaSO4 Nanoparticles -- 16.3.3.1. Nanoparticles Redispersed from the L2 Phase -- 16.3.3.2. Nanoparticles Redispersed from the Bicontinuous Phase -- 16.4. Conclusions -- References -- 17. Maximizing the Uptake of Nickel Oxide Nanoparticles by AOT (W/O) Microemulsions Nashaat N. Nassar and Maen M. Husein -- 17.1. Introduction -- 17.2. Experimental Section -- 17.2.1. Chemicals -- 17.2.2. Nanoparticle Synthesis -- 17.3. Results and Discussion -- 17.3.1. Stability of the Colloidal Nanoparticles -- 17.3.2. Effect of AOT Concentration -- 17.3.3. Effect of Water to AOT Mole Ratio, R -- 17.3.4. Effect of Concentration of Ni(NO3)2 Precursor -- 17.4. Conclusions -- Acknowledgments -- References -- 18. A Brief Overview on Synthesis and Size Dependent Photocatalytic Behaviour of Luminescent Semiconductor Quantum Dots A. Priyam, S. Ghosh, A. Datta, A. Chatterjee and A. Saha -- 18.1. Introduction -- 18.2. Experimental -- 18.2.1. Synthesis of Thiol-capped CdS and CdTe Quantum Dots -- 18.2.2. Dendrimer-mediated Synthesis of CdTe Quantum Dots -- 18.2.3. Determination of the Average Particle Size and Size Distribution -- 18.3. Determination of PLQE -- 18.4. Results and Discussions -- 18.4.1. Supersaturation Driven Tailoring of Size Distribution and PLQE -- 18.4.2. Size Distribution -- 18.4.3. Photoluminescence Quantum Efficiency -- 18.5. Synthesis of CdTe QDs in Dendrimer Matrix -- 18.5.1. Effect of variation in Cd2+: Te2- Molar Ratio -- 18.5.2. pH Effect -- 18.5.3. Temperature Effect -- 18.6. Size Dependent Luminescence Quenching of CdS QDs and Photocatalytic Degradation of Nitroaromatics -- 18.7. Concluding Remarks -- Acknowledgements -- References. 19. Dramatic Enhancement in the Cation Sensing Efficiency in Anionic Micelles: A Simple and Efficient Approach Towards Improving the Sensor Efficiency Paramita Das, Deboleena Sarkar and Nitin Chattopadhyay.
9789814299428
Surface chemistry.
Electronic books.
QD506.R43 2012
541.3