ORPP logo

Nanoparticles : New Research.

Lombardi, Simone Luca.

Nanoparticles : New Research. - 1st ed. - 1 online resource (426 pages)

Intro -- NANOPARTICLES: NEW RESEARCH -- NANOPARTICLES: NEW RESEARCH -- CONTENTS -- PREFACE -- FORMATION OF NANOPARTICLES UNDER LASERABLATION OF SOLIDS IN LIQUIDS -- Abstract -- Introduction -- General Setup of Laser Ablation in Liquids -- Experimental Technique -- 1. Pulse Duration -- 2. Laser Wavelength -- 3. Repetition Rate -- Historical Review -- Laser Ablation of an Ag Target in Liquid Environment -- Laser Ablation of an Au Target in Liquid Environment -- Interaction of Nanoparticles with Laser Beam -- Fragmentation of NP under Laser Exposure in Liquids -- Shape-selective Fragmentation -- Shape-selective Fragmentation -- Nanoparticles of Cu, Brass, and Bronze -- Internal Segregation of Brass NP -- Self-influence of a Femtosecond Laser Beam -- Influence of the Nature of the Liquid -- Ablation of a Ti Target -- Ablation of Sn -- W and Mo NP -- Modeling of Distribution Function -- Influence of Intensity Distribution of the Laser Beam on theShape of Nanoparticles -- Nanostructuring of Solids under their Laser Ablation in Liquids -- Excitation of High Energy Levels -- Conclusion -- References -- CARBON NANOPARTICLES AS SUBSTRATESFOR CELL ADHESION AND GROWTH -- Abstract -- 1. Introduction -- 2. Cell Growth on Fullerene C60 Layers -- 2.1. Continuous C60 Layers -- 2.2. Micropatterned C60 Layers -- 2.3. Fullerene C60 Layers Modified by Ion- or Laser-irradiation -- 2.4. Metal-fullerene C60 Composites -- 3. Cell Growth on Polymer-Carbon Nanotube Composites -- 3.1. Composites of Carbon Nanotubes and PTFE/PVDF/PP -- 3.2. Composites of Carbon Nanotubes and PSU -- 3.3. Interaction of Cells with Carbon Nanotubes Suspended in the CultureMedia -- 4. Nanocrystalline Diamond Layers -- 5. Other Carbon-Based Layers for Potential Biomaterial Coating -- 6. Conclusion and Further Perspectives -- Acknowledgements -- References. ORGANIC-SHELL INORGANIC-CORE HYBRIDNANOPARTICLES WITH ADVANCED FUNCTIONSDESIGNED BY WET PROCESS -- Abstract -- Introduction -- 1. Functionalization of Metal Nanoparticles by Organic Molecules -- 1.1. Electrodeposition of Metal Nanoparticles Surrounded by Multiple RedoxUnits -- 1.2. Discotic Liquid Crystalline Molecule Modified Gold Nanoparticles withControlling their Assemble Structure -- 1.3. Formation of a Porphyrin-Gold Nanoparticle Network -- 2. Physical Structure Control of Metal Nanoparticles as AdvancedCatalysts -- 2.1. Synthesis and Size Control of Platinum Nanocubes with High Selectivityof Shape -- 2.2. Synthesis and Diameter Control of Multi-walled Carbon Nanotubes overGold Nanoparticle Catalysts -- 3. Introduction of Metal Coordination Polymers into aNanoparticle Core -- 3.1. Synthesis and Downsizing Effect of Metal Coordination Nano-polymers -- 3.2. Applicable Usage of Metal Coordination Nano-polymers -- Conclusion -- Acknowledgements -- References -- HIGHLY STABILIZED GOLD NANOPARTICLESSYNTHESIZED AND MODIFIEDBY PEG-B-POLYAMINE -- Introduction -- 2.1. Synthesis of α-acetal-poly(ethylene glycol)-block-poly(2-(N,N-dimethylamino)ethyl methacrylate) [47] -- 2.2. Facile Synthesis of PEGylated Gold Nanoparticles [47] -- 2.3. Characterization of Facilely Synthesized PEGylated Gold Nanoparticles[47] -- 2.4. Facile Synthesis of Biotinyl-PEGylated Gold Nanoparticles Usingα-biotinyl-poly(ethylene glycol)-block-poly(2-(N,N-dimethylamino)ethyl methacrylate) [47] -- 2.5. Synthesis of Metoxy-poly(ethylene glycol)-block-poly(2-(N,N-dimethylamino)ethyl methacrylate) with a Variety of Polyamine ChainLength [57] -- 2.6. Modification of Gold Nanoparticles Using PEG-b-PAMA(43) underDifferent pH Conditions [57] -- 2.7. Modification of Gold Nanoparticles Using PEG-b-PAMA(43) underDifferent Concentration [57]. 2.8. Modification of Gold Nanoparticles Using Various Molecular Weight ofPEG-b-PAMAs [57] -- 2.9. Quantification of Adsorbed PEG-b-PAMA on GNPs [57] -- 3. Conclusion -- References -- NANOPARTICLES AND QUANTUM DOTS AS BIOMOLECULE LABELS FOR ELECTROCHEMICAL BIOSENSING -- Abstract -- Metallic Nanoparticles -- Biomolecule Multiplexing via Quantum Dots with Different Electrochemical Signature -- Soft Nanoparticles -- Outlook -- References -- HYBRID NANOPARTICLE BASED ON SILICA -- Abstract -- 1. Introduction -- 2. Encapsulating Inorganic Nanomaterials Using SiO2 Sphere -- 2.1. Metal/Silica Core/Shell Nanostructure -- 2.2. Semiconductor/Silica Core/Shell Nanostructure -- 2.3. Magnetic Nanoparticle/Silica Core/Shell Nanostructure -- 3. Fluorophore-Doped Silica Nanoparticles -- 4. Constructing Muti-functional Hybrid Materials Using SiO2Sphere as Supporting Material -- 5. Important Applications of Hybrid Nanoparticles Based onSilica -- 6. Summary and Outlook -- About the Authors -- Acknowledgment -- References -- HEAT TRANSFER OF NANOPARTICLE SUSPENSIONS(NANOFLUIDS) -- Abstract -- 1. Introduction -- 1.1. Development and Concept of Nanofluids -- 1.2. Impact and Potential Benefits of Nanofluids -- 1.2a. Improved Heat Transfer and Stability -- 1.2b. Microchannel Cooling without Clogging -- 1.2c. Miniaturized Systems -- 1.3. Potential Applications of Nanofluids -- 1.3a. Nanofluids in Transportation -- 1.3b. In Micromechanics -- 1.3c. In Electronics and Instrumentation -- 1.3d. In Medical Applications -- 2. Synthesis of Nanofluids -- 3. Preparation and Characterization of Sample Nanofluids -- 4. Properties of Base Fluids and Nanoparticles -- 5. Experimental Studies on Thermal Conductivity of Nanofluids -- 5.1. Measurement Method -- 5.2. Effect of Particle Volume Fraction and Base Fluids -- 5.2.1. Results from the Literature -- 5.2.2. Results by the Authors. 5.3. Effect of Particle Size and Shape -- 5.4. Effect of Fluid Temperature -- 5.4.1. Results from the Literature -- 5.4.2. Results by the Authors -- 6. Theoretical Studies on Nanofluids -- 6.1. Mechanisms for the Enhanced Thermal Conductivity of Nanofluids -- 6.2. Models for the Effective Thermal Conductivity -- 7. Studies on Thermal Diffusivity and Specific Heat of Nanofluids -- 7.1. Thermal Diffusivity of Nanofluids -- 7.2. Determination of Specific Heat of Nanofluids -- 7.2.1. Theoretical Model for Specific Heat -- 7.2.2. Results and Comparisons -- 7.3. Summary of Results -- 8. Studies on Viscosity of Nanofluids -- 8.1. Reported Studies in Literature -- 8.2. Models for the Effective Viscosity -- 8.3. Present Studies by the Authors -- 8.4. Summary -- 9. Electrokinetic Phenomena of Nanofluids -- 9.1. Reported Studies in the Literature -- 9.2. Studies by the Authors -- 9.2.1. Effects of pH value and Electrolyte Concentration on Zeta Potential -- 9.2.2. Effects of pH value and Electrolyte Concentration on Thermal Conductivity -- 9.3. Summary -- 10. Conclusions and Future Work -- References -- RECENT DEVELOPMENTS IN THE EFFECTIVETHERMAL CONDUCTIVITY OF NANOPARTICLESUSPENSIONS (NANOFLUIDS) RESEARCH -- Abstract -- 1. Introduction -- 2. The Mean-Field Theory and Models -- 2.1. Models with Consideration of the Shape Influence of Dispersed Particle -- 2.2. Models with Consideration of Interaction between Particles -- 2.3. Models with the Consideration of Interfacial Resistance -- 2.4. Models of Liquid-Liquid Mixture -- 3. Development of Nanoparticle Suspension Study and Two MajorPossible Mechanisms: Brownian Motion and Agglomeration -- 3.1. Experimental Reports on Effective Thermal Conductivity ofNanoparticle Suspensions -- 3.2. The Simulation Reports on the Effective Thermal Conductivity ofNanoparticle Suspensions. 3.3. Brownian Motion Models of Effective Thermal Conductivity ofNanoparticle Suspensions -- 3.4. Related Research on the Agglomeration Mechanisms -- 4. Discussion and Conclusion -- References -- ENHANCEMENTANDTEMPERATUREVARIATIONINTHETHERMALCONDUCTIVITYOFNANOFLUIDS -- Abstract -- 1.Introduction -- 2.ThermalConductivityofLiquids -- 3.ThermalConductivityofSolids -- 4.ExperimentalDataofNanofluids -- 5.PresentModelstoAccountfortheTemperatureEffect -- 5.1.1DParallelProcess-BasedHeatFlowPaths -- 5.2.ModelsoftheAdditiveType -- 5.3.ModelsoftheCorrelationType -- 6.Conclusions -- References -- NANOTECHNOLOGY: OBTAINING OF NANOPARTICLES AND NANOCOMPOSITES AND THEIR USE IN FOOD AND DRUG PACKAGING -- Abstract -- Introduction -- Industrial Applications of Nanotechnology -- Nanoparticles Obtain by Clays -- Clay's Modification -- Nanoparticulas Obtained by the Sol-gel Method -- Nanoparticles Obtain by Sol-gel Compared with Nanoparticles Obtained by Treatment of Clays -- Nanocomposites -- Nanocomposites Obtained Using Clays Modified -- Compatibilizer Agent -- Nanocomposites Obtained Using Sol-gel Nanoparticles -- Interaction of PP-g-IA with Nanoparticles -- Nanocomposites Obtained Using Sol-Gel Nanoparticles -- Mechanical Properties -- Comparison between Nanocomposites Obtained with Clays and Sol-gel Particles -- Comparison between PP-g-IA and PP-g-MA as Compatibilizer Agents in Nanocompositos Formation -- Nanoparticles Used as Sensor -- Use of Nano Sensor in the Industry -- Food and Drug Packaging -- Intelligent Packaging by Supply Chain -- Future Trends in the World of Nanoparticles -- References -- THE APPLICATIONS OF NANOPARTICLES IN ELECTROCHEMISTRY -- Abstract -- 1. Introduction -- 2. The NPs Fabrication -- 2.1. 0-Dimensional Inorganic Nanostructure Materials (Metal NPs) -- Solution Processes -- Electrochemical Methods -- Other Methods. 2.2. 1-Dimensional Inorganic Nanostructure Materials.

9781617618055


Nanostructures.
Nanostructured materials.
Nanoparticles.


Electronic books.

QC176.8.N35 -- N3553 2008eb

620/.5

© 2024 Resource Centre. All rights reserved.